
Mahatma Education Society's

## **Pillai College of Engineering**

## (Autonomous)

## Affiliated to University of Mumbai

Dr. K. M. Vasudevan Pillai's Campus , Sector 16, New Panvel – 410 206.



**Department of Electronics and Telecommunication Engineering** 

**Syllabus** 

of

**B.Tech. in Electronics and Telecommunication Engineering** 

for

The Admission Batch of AY 2021-22

First Year - Effective from Academic Year 2021-22

Second Year - Effective from Academic Year 2022-23

Third Year - Effective from Academic Year 2023-24

Fourth Year - Effective from Academic Year 2024-25

as per

**Choice Based Credit and Grading System** 

Department of Electronics and Telecommunication Engineering - Syllabus for Undergraduate Programme

Mahatma Education Society's

#### **Pillai College of Engineering**

#### Vision

Pillai College of Engineering (PCE) will admit, educate and train a diverse population of students who are academically prepared to benefit from the Institute's infrastructure and faculty experience, to become responsible professionals or entrepreneurs in a technical arena. It will further attract, develop and retain, dedicated, excellent teachers, scholars and professionals from diverse backgrounds whose work gives them knowledge beyond the classroom and who are committed to making a significant difference in the lives of their students and the community.

#### Mission

To develop professional engineers with respect for the environment and make them responsible citizens in technological development both from an Indian and global perspective. This objective is fulfilled through quality education, practical training and interaction with industries and social organizations.



Dr. K. M. Vasudevan Pillai's Campus , Sector - 16, New Panvel - 410 206

#### **Department of Electronics and Telecommunication Engineering**

#### Vision

Strive towards producing world class engineers who will continuously innovate, upgrade telecommunication technology and provide advanced, hazard-free solutions to the mankind.

Inspire, educate and empower students to ensure green and sustainable society.

#### Mission

Benchmarking against technologically sound global telecommunication institutions with a view towards continuous improvement. Continually exposing students to scenarios that demand structuring of complex problems and proposing solutions. Educate students and promote values that can prevent further degradation of our planet. Becoming responsible citizens genuinely concerned with and capable of contributing to a just and peaceful world.

#### **Program Educational Objectives (PEOs):**

- I. Provide graduates with a strong foundation in mathematics, science and engineering fundamentals to enable them to analyze and solve challenging problems in Electronics and Telecommunication Engineering
- II. Impart analytic and thinking skills to develop innovative ideas in the field of Telecommunication Engineering
- III. To keep students up to date with the latest advancements in the field of Electronics and Telecommunication
- IV. Inculcate qualities of leadership skills, multidisciplinary teamwork and an ability to adapt to evolving professional environment in the field of Engineering and Technology
- V. To create awareness among the students towards ethical, social and environmental issues in the professional career

#### **Program Outcomes:**

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### **Program Specific Outcomes (PSOs):**

- 1. Able to understand the concept of Basic Electronics, Network and Circuit Analysis, Analog and Digital circuits, Signals and System, Electromagnetics and apply them in various areas like Microwave Engineering, Wireless Communication, Digital image processing, Advance Communication systems etc.
- 2. Able to use techniques, skills, software, equipments and modern engineering tools necessary for Electronics and Telecommunication Engineers to identify, formulate and solve problems in industries and research work.
- 3. Able to work in multidisciplinary environment to provide socially acceptable technical solutions for complex communication engineering problems.

The Autonomous status of the institute has given an opportunity to design and frame the curriculum in such a way that it incorporates all the needs and requirements of recent developments in all fields within the scope of the Technical education. This curriculum will help graduates to attain excellence in their respective field. The curriculum has a blend of basic and advanced courses along with provision of imparting practical knowledge to students through minor and major projects. The syllabus has been approved and passed by the Board of Studies.

Outcome based education is implemented in the academics and every necessary step is undertaken to attain the requirements. Every course has its objectives and outcomes defined in the syllabus which are met through continuous assessment and end semester examinations. Evaluation is done on the basis of Choice Based Credit and Grading System (CBCGS). Optional courses are offered at department and institute level. Selection of electives from the same specialization makes the student eligible to attain a B. Tech. degree with respective specialization.

Every learner/student will be assessed for each course through (i) an Internal/Continuous assessment during the semester in the form of either Practical Performance, Presentation, Demonstration or written examination and (ii) End Semester Examination (ESE), in the form of either theory or viva voce or practical, as prescribed by the respective Board Studies and mentioned in the assessment scheme of the course content/syllabus. This system involves the Continuous Evaluation of students' progress Semester wise. The number of credits assigned with a course is based on the number of contact hours of instruction per week for the course. The credit allocation is available in the syllabus scheme of each semester.

The performance of a learner in a semester is indicated by a number called Semester Grade Performance Index (SGPI). The SGPI is the weighted average of the grade points obtained in all the courses by the learner during the semester. For example, if a learner passes five courses (Theory/labs./Projects/ Seminar etc.) in a semester with credits C1, C2, C3, C4 and C5 and learners grade points in these courses are G1, G2, G3, G4 and G5 respectively, then learners SGPI is equal to:

$$SGPI = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4 + C_5G_5}{C_1 + C_2 + C_3 + C_4 + C_5}$$

The learner's up to date assessment of the overall performance from the time s/he entered for the programme is obtained by calculating a number called the Cumulative Grade Performance Index (CGPI), in a manner similar to the calculation of SGPI. The CGPI therefore considers all the courses mentioned in the scheme of instructions and examinations, towards the minimum requirement of the degree learners have enrolled for. The CGPI at the end of this semester is calculated as,

$$CGPI = \frac{C_1G_1 + C_2G_2 + C_3G_3 + \dots + C_i * G_i + \dots + C_nG_n}{C_1 + C_2 + C_3 + \dots + C_i + \dots + C_n}$$

The Department of Electronics and Telecommunication Engineering offers a B. Tech. programme in Electronics and Telecommunication Engineering. This is an eight semester course. The complete course is a 162 credit course which comprises core courses and elective courses. The elective courses are distributed over 4 specializations. The specializations are:

- 1. Group 1: Internet of Things
- 2. Group 2: Product Design
- 3. Group 3: Advanced Communication System
- 4. Group 4: Cloud Computing

The students also have a choice of opting for Institute level specializations. These are

- 1. Business and Entrepreneurship
- 2. Bio Engineering
- 3. Engineering Design
- 4. Art and Humanities
- 5. Applied Science
- 6. Life Skills, Repair, Maintenance and Safety

As minimum requirements for the credits to be earned during the B.Tech in Electronics and Telecommunication Engineering program, a student will have to complete a minimum of three specializations of which two are to be chosen from the department list and one has to be from the Institute level specialization list. In order to complete each specialization, a minimum of three courses under that specialization has to be completed. The credit requirement for the B.Tech. In Electronics and Telecommunication Engineering course is tabulated in Table 1.

Table 1. Credit Requirement for B. Tech in Electronics and Telecommunication Engineering

| Category                                                                                              | Credits |
|-------------------------------------------------------------------------------------------------------|---------|
| Humanities and Social Sciences including Management courses                                           | 9       |
| Basic Science courses                                                                                 | 25      |
| Engineering Science courses including workshop, drawing, basics of Electrical/Mechanical/Computer etc | 14      |
| Professional core courses                                                                             | 53      |
| Program Specific Elective Courses                                                                     | 24      |
| Institute Electives                                                                                   | 9       |
| Project work, seminar and internship in industry or elsewhere                                         | 22      |
| Innovation/Skill Based Learning                                                                       | 8       |
| Total Credits                                                                                         | 164     |

#### **Proposed Program Structure for**

### **Bachelor of Technology in Electronics and Telecommunication Engineering**

| Course |                              | Course        |        | g Scheme<br>et Hours)  | Credits Assigned |                        |       |  |
|--------|------------------------------|---------------|--------|------------------------|------------------|------------------------|-------|--|
| Code   | Course manie                 | Compo<br>nent | Theory | Practical<br>/Tutorial | Theory           | Practical<br>/Tutorial | Total |  |
| ET 101 | Engineering Mathematics I    | TLP           | 3      | 2                      | 3                | 1                      | 4     |  |
| ET 102 | Engineering Physics I        | TL            | 2      | 1                      | 2                | 0.5                    | 2.5   |  |
| ET 103 | Engineering Chemistry I      | TL            | 2      | 1                      | 2                | 0.5                    | 2.5   |  |
| ET 104 | Engineering Mechanics        | TL            | 3      | 2                      | 3                | 1                      | 4     |  |
| ET 105 | Basic Electrical Engineering | TL            | 3      | 2                      | 3                | 1                      | 4     |  |
| ET 106 | Basic Engineering Workshop I | L             | -      | 3                      | -                | 1.5                    | 1.5   |  |
| Total  |                              |               | 13     | 11                     | 13               | 5.5                    | 18.5  |  |

#### Semester I

## Examination Scheme Semester I

|                |                                 |                        |       | Theo | ry         |                  |              |                 |       |
|----------------|---------------------------------|------------------------|-------|------|------------|------------------|--------------|-----------------|-------|
| Course<br>Code | Course Name                     | Internal<br>Assessment |       |      | End<br>Sem | Exam<br>Duration | Term<br>Work | Pract /<br>Oral | Total |
|                |                                 |                        |       |      |            |                  |              |                 |       |
| ET 101         | Engineering Mathematics I       | 40                     | 40    | 40   | 60         | 2                | 25           | -               | 125   |
| ET 102         | Engineering Physics I           | 30                     | 30    | 30   | 45         | 2                | 25           | -               | 100   |
| ET 103         | Engineering Chemistry I         | 30                     | 30    | 30   | 45         | 2                | 25           | -               | 100   |
| ET 104         | Engineering Mechanics           | 40                     | 40    | 40   | 60         | 2                | 25           | 25              | 150   |
| ET 105         | Basic Electrical Engineering    | 40                     | 40    | 40   | 60         | 2                | 25           | 25              | 150   |
| ET 106         | Basic Engineering<br>Workshop I | -                      | -     | -    | -          | -                | 50           | -               | 50    |
|                |                                 | r                      | Fotal |      |            |                  |              |                 | 675   |

T- Theory , L- Lab , P-Programming, C- Communication

| Course |                                         | Course        |        | g Scheme<br>ct Hours)  | Credits Assigned |                        |       |  |
|--------|-----------------------------------------|---------------|--------|------------------------|------------------|------------------------|-------|--|
| Code   | Course Name                             | Compo<br>nent | Theory | Practical<br>/Tutorial | Theory           | Practical<br>/Tutorial | Total |  |
| ET 107 | Engineering Mathematics II              | TLP           | 3      | 2                      | 3                | 1                      | 4     |  |
| ET 108 | Engineering Physics II                  | TL            | 2      | 1                      | 2                | 0.5                    | 2.5   |  |
| ET 109 | Engineering Chemistry II                | TL            | 2      | 1                      | 2                | 0.5                    | 2.5   |  |
| ET 110 | Engineering Drawing and Graphics        | TL            | 1      | 4                      | 1                | 2                      | 3     |  |
| ET 111 | Python Programming I                    | TL            | 3      | 2                      | 3                | 1                      | 4     |  |
| ET 112 | Professional Communication and Ethics I | TLC           | 2      | 2                      | 2                | 1                      | 3     |  |
| ET 113 | Basic Engineering Workshop II           | L             |        | 3                      | -                | 1.5                    | 1.5   |  |
|        | Total                                   |               | 13     | 15                     | 13               | 7.5                    | 20.5  |  |

#### Semester II

## Examination Scheme Semester II

|                |                                            |                        |      | The   | ory        |                  |              |                |       |
|----------------|--------------------------------------------|------------------------|------|-------|------------|------------------|--------------|----------------|-------|
| Course<br>Code | Course Name                                | Internal<br>Assessment |      |       | End<br>Sem | Exam<br>Duration | Term<br>Work | Pract/<br>Oral | Total |
|                | Sem                                        |                        | Exam | (Hrs) |            |                  |              |                |       |
| ET 107         | Engineering Mathematics II                 | 40                     | 40   | 40    | 60         | 2                | 25           | -              | 125   |
| ET 108         | Engineering Physics II                     | 30                     | 30   | 30    | 45         | 2                | 25           | -              | 100   |
| ET 109         | Engineering Chemistry II                   | 30                     | 30   | 30    | 45         | 2                | 25           | -              | 100   |
| ET 110         | Engineering Drawing and Graphics           | 40                     | 40   | 40    | 60         | 2                | 25           | 25             | 150   |
| ET 111         | Python Programming I                       | 40                     | 40   | 40    | 60         | 2                | 25           | 25             | 150   |
| ET 112         | Professional Communication<br>and Ethics I | 20                     | 20   | 20    | 30         | 1                | -            | 25             | 75    |
| ET 113         | Basic Engineering Workshop<br>II           | -                      | -    | -     | -          | -                | 50           | -              | 50    |
|                | Total                                      |                        |      |       |            |                  |              |                | 750   |

T- Theory , L- Lab , P-Programming, C- Communication

#### **Bachelor of Technology in Electronics and Telecommunication Engineering**

| Course Name                    | Compo                                                                                                                                    |                                                                                                                              | et Hours)                                                                                                                      | Credits Assigned                                                                                                                            |                                                                                                                                                                     |                                                                                                                                                                             |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course runne                   | nent                                                                                                                                     | Theory                                                                                                                       | Practical<br>/Tutorial                                                                                                         | Theory                                                                                                                                      | Practical<br>/Tutorial                                                                                                                                              | Total                                                                                                                                                                       |  |
| Engineering Mathematics III    | TL                                                                                                                                       | 3                                                                                                                            | 2                                                                                                                              | 3                                                                                                                                           | 1                                                                                                                                                                   | 4                                                                                                                                                                           |  |
| Electronics Devices            | TL                                                                                                                                       | 3                                                                                                                            | 2                                                                                                                              | 3                                                                                                                                           | 1                                                                                                                                                                   | 4                                                                                                                                                                           |  |
| Network Theory                 | Т                                                                                                                                        | 3                                                                                                                            | _                                                                                                                              | 3                                                                                                                                           | -                                                                                                                                                                   | 3                                                                                                                                                                           |  |
| Instruments and Control System | Т                                                                                                                                        | 3                                                                                                                            | -                                                                                                                              | 3                                                                                                                                           | -                                                                                                                                                                   | 3                                                                                                                                                                           |  |
| Signal and Systems             | Т                                                                                                                                        | 3                                                                                                                            | -                                                                                                                              | 3                                                                                                                                           | -                                                                                                                                                                   | 3                                                                                                                                                                           |  |
| Python Programming II          | LP                                                                                                                                       | -                                                                                                                            | 2                                                                                                                              | -                                                                                                                                           | 1                                                                                                                                                                   | 1                                                                                                                                                                           |  |
| Mini Project I                 | LC                                                                                                                                       | -                                                                                                                            | 2                                                                                                                              | -                                                                                                                                           | 1                                                                                                                                                                   | 1                                                                                                                                                                           |  |
| Total                          |                                                                                                                                          | 15                                                                                                                           | 8                                                                                                                              | 15                                                                                                                                          | 4                                                                                                                                                                   | 19                                                                                                                                                                          |  |
| E                              | Electronics Devices<br>Network Theory<br>Instruments and Control System<br>Signal and Systems<br>Python Programming II<br>Mini Project I | Electronics DevicesTLNetwork TheoryTnstruments and Control SystemTSignal and SystemsTPython Programming IILPMini Project ILC | Betwork TheoryTL3Network TheoryT3Instruments and Control SystemT3Signal and SystemsT3Python Programming IILP-Mini Project ILC- | Bellectronics DevicesTL32Setwork TheoryT3-Instruments and Control SystemT3-Signal and SystemsT3-Python Programming IILP-2Mini Project ILC-2 | Betwork DevicesTL323Electronics DevicesTL323Network TheoryT3-3Instruments and Control SystemT3-3Signal and SystemsT3-3Python Programming IILP-2-Mini Project ILC-2- | Between BoundaryTL3231Electronics DevicesTL3231Network TheoryT3-3-Instruments and Control SystemT3-3-Signal and SystemsT3-3-Python Programming IILP-2-1Mini Project ILC-2-1 |  |

#### Semester III

#### Examination Scheme Semester III

| Course | Course Name                       |    |                   | Theo | ory        |                  | Term | Pract / | Total |
|--------|-----------------------------------|----|-------------------|------|------------|------------------|------|---------|-------|
| Code   |                                   |    | Interna<br>sessme |      | End<br>Sem | Exam<br>Duration | Work | Oral    |       |
|        |                                   | 1  | 2                 | Avg  | Exam       | (Hrs)            |      |         |       |
| ET 201 | Engineering<br>Mathematics III    | 40 | 40                | 40   | 60         | 2                | 25   | 25      | 150   |
| ET 202 | Electronics Devices               | 40 | 40                | 40   | 60         | 2                | 25   | 25      | 150   |
| ET 203 | Network Theory                    | 40 | 40                | 40   | 60         | 2                | -    | -       | 100   |
| ET 204 | Instruments and<br>Control System | 40 | 40                | 40   | 60         | 2                | -    | -       | 100   |
| ET 205 | Signal and Systems                | 40 | 40                | 40   | 60         | 2                | -    | -       | 100   |
| ET 206 | Python Programming<br>II          | -  | -                 | -    | -          | -                | 25   | 25      | 50    |
| ET 291 | Mini Project I                    | _  | _                 | -    | -          | -                | 25   | 25      | 50    |
|        |                                   |    | Tota              | al   |            |                  |      |         | 700   |

T- Theory , L- Lab , P-Programming , C- Communication

#### **Bachelor of Technology in Electronics and Telecommunication Engineering**

| Course |                                  | Course        | Teaching Sch<br>(Contact Ho |                        | Credits Assigned |                        |       |  |
|--------|----------------------------------|---------------|-----------------------------|------------------------|------------------|------------------------|-------|--|
| Code   | Course Name                      | Compo<br>nent | Theory                      | Practical<br>/Tutorial | Theory           | Practical<br>/Tutorial | Total |  |
| ET 207 | Engineering Mathematics IV       | Т             | 3                           | -                      | 3                | -                      | 3     |  |
| ET 208 | Electronic Communication Systems | TL            | 3                           | 2                      | 3                | 1                      | 4     |  |
| ET 209 | Linear Integrated Circuits       | TL            | 3                           | 2                      | 3                | 1                      | 4     |  |
| ET 210 | Digital Signal Processing        | Т             | 3                           | -                      | 3                | -                      | 3     |  |
| ET 211 | Microprocessor & Microcontroller | TL            | 3                           | 2                      | 3                | 1                      | 4     |  |
| ET 212 | Personal Finance Management      | Т             | 2                           | -                      | 2                | -                      | 2     |  |
| ET 213 | Programming (Matlab and Scilab)  | LP            | -                           | 2                      | -                | 1                      | 1     |  |
| ET 292 | Mini Project II                  | LC            |                             | 2                      | -                | 1                      | 1     |  |
|        | Internship*                      |               |                             | -                      | -                | -                      | -     |  |
|        | Total                            |               | 17                          | 10                     | 17               | 5                      | 22    |  |

#### Semester IV

#### **Examination Scheme Semester IV**

|                |                                     |                     |    | Theor | ſy          |                   |              |                 |       |
|----------------|-------------------------------------|---------------------|----|-------|-------------|-------------------|--------------|-----------------|-------|
| Course<br>Code | Course Name                         | Internal Assessment |    |       | End         | Exam              | Term<br>Work | Pract<br>/ Oral | Total |
| Couc           |                                     | 1                   | 2  | Avg   | Sem<br>Exam | Duration<br>(Hrs) | VV OT IX     | / 0141          |       |
| ET 207         | Engineering Mathematics IV          | 40                  | 40 | 40    | 60          | 2                 | -            | -               | 100   |
| ET 208         | Electronic Communication<br>System  | 40                  | 40 | 40    | 60          | 2                 | 25           | 25              | 150   |
| ET 209         | Linear Integrated Circuits          | 40                  | 40 | 40    | 60          | 2                 | 25           | 25              | 150   |
| ET 210         | Digital Signal Processing           | 40                  | 40 | 40    | 60          | 2                 | -            | -               | 100   |
| ET 211         | Microprocessor &<br>Microcontroller | 40                  | 40 | 40    | 60          | 2                 | 25           | 25              | 150   |
| ET 212         | Personal Finance<br>Management      | 20                  | 20 | 20    | 40          | 2                 | -            | -               | 60    |
| ET 213         | Programming<br>(Matlab and Scilab)  | -                   | -  | -     | -           | -                 | 25           | 25              | 50    |
| ET 292         | Mini Project II                     | -                   | -  | -     | -           | -                 | 25           | 25              | 50    |
| Total          |                                     |                     |    |       |             |                   |              |                 | 810   |

T- Theory , L- Lab , P-Programming, C- Communication

\* Internship is desirable but not mandatory

#### Bachelor of Technology in Electronics and Telecommunication Engineering Semester V

| Course | Course Name                               | Course    | (Conta | ng Scheme<br>ct Hours) | Credits Assigned |                        |       |  |
|--------|-------------------------------------------|-----------|--------|------------------------|------------------|------------------------|-------|--|
| Code   | Course Manie                              | Component | Theory | Practical<br>/Tutorial | Theory           | Practical<br>/Tutorial | Total |  |
| ET 301 | Digital Communication                     | TL        | 3      | 2                      | 3                | 1                      | 4     |  |
| ET 302 | Electromagnetic Engineering               | Т         | 3      | -                      | 3                | -                      | 3     |  |
| ET 303 | Image Processing & Machine Vision         | Т         | 3      | -                      | 3                | -                      | 3     |  |
| ET 304 | Embedded Systems                          | TL        | 3      | 2                      | 3                | 1                      | 4     |  |
| ET 305 | Programming (Java and Scripting)          | LP        | -      | 2                      | ſ                | 1                      | 1     |  |
| ET 306 | Professional Communication &<br>Ethics II | TLC       | 2      | 2                      | -                | 2                      | 2     |  |
| ET 3xx | Elective I                                | TL        | 3      | 2                      | 3                | 1                      | 4     |  |
| ET 391 | Mini Project III                          | LC        | -      | 2                      |                  | 2                      | 2     |  |
|        | Total                                     |           | 17     | 12                     | 15               | 8                      | 23    |  |

Examination Scheme Semester V

|        |                                              |                     |    | Theor | ry          |                   | Term |        |       |
|--------|----------------------------------------------|---------------------|----|-------|-------------|-------------------|------|--------|-------|
| Course | Course Name                                  | Internal Assessment |    |       | End         | End Exam          |      | Pract/ | Total |
| Code   |                                              | 1                   | 2  | Avg   | Sem<br>Exam | Duration<br>(Hrs) | Work | Oral   |       |
| ET 301 | Digital Communication                        | 40                  | 40 | 40    | 60          | 2                 | 25   | 25     | 150   |
| ET 302 | Electromagnetic<br>Engineering               | 40                  | 40 | 40    | 60          | 2                 | I    | -      | 100   |
| ET 303 | Image Processing &<br>Machine Vision         | 40                  | 40 | 40    | 60          | 2                 | I    | -      | 100   |
| ET 304 | Embedded Systems                             | 40                  | 40 | 40    | 60          | 2                 | 25   | 25     | 150   |
| ET 305 | Programming (Java and Scripting              | -                   | -  | I     | -           | -                 | 25   | 25     | 50    |
| ET 306 | Professional<br>Communication &<br>Ethics II | -                   | -  | -     | -           | -                 | 50   | -      | 50    |
| ET 3xx | Elective I                                   | 40                  | 40 | 40    | 60          | 2                 | 25   | 25     | 150   |
| ET 391 | Mini Project III                             | -                   | -  | -     | -           | -                 | 25   | 25     | 50    |
|        | Total                                        |                     |    |       |             |                   |      |        |       |

T- Theory , L- Lab , P-Programming , C- Communication

#### Department Elective is to be chosen from Group I or Group II

| Semester V<br>Electives |                               | Department Level Optic                                     | onal Courses (DLOC                  | )                  |
|-------------------------|-------------------------------|------------------------------------------------------------|-------------------------------------|--------------------|
|                         | Group I                       | Group III                                                  | Group IV                            |                    |
| Specialization          | ЮТ                            | Product Design                                             | Advanced<br>Communication<br>System | Cloud<br>Computing |
| <b>Course Code</b>      | ET 307                        | ET 308                                                     | -                                   | -                  |
| Course Name<br>DLOC I   | IOT Basics &<br>Smart sensors | PCB Design and<br>Electronics Equipment<br>Troubleshooting | -                                   | -                  |

Department of Electronics and Telecommunication Engineering - Syllabus for Undergraduate Programme

#### **Bachelor of Technology in Electronics and Telecommunication Engineering**

| Course | Course Name                        | Course    |           | ng Scheme<br>ct Hours) | Credits Assigned |                        |       |
|--------|------------------------------------|-----------|-----------|------------------------|------------------|------------------------|-------|
| Code   | Course Name                        | Component | Theory    | Practical<br>/Tutorial | Theory           | Practical<br>/Tutorial | Total |
| ET 309 | Wireless & Mobile<br>Communication | Т         | 3         | -                      | 3                | -                      | 3     |
| ET 310 | Antenna Theory & Design            | Т         | 3         | -                      | 3                | -                      | 3     |
| ET 311 | WM & AT Lab                        | L         | -         | 2                      | -                | 1                      | 1     |
| ET 312 | R Programming                      | LP        | -         | 2                      | -                | 1                      | 1     |
| ET 3xx | Elective II                        | TL        | 3         | 2                      | 3                | 1                      | 4     |
| ET 3xx | Elective III                       | TL        | 3         | 2                      | 3                | 1                      | 4     |
| IL 3xx | Institute Elective I               | (         | Course Sp | ecific Asse            | ssment           |                        | 3     |
| ET 392 | Major Project A                    | LC        | -         | 2                      |                  | 2                      | 2     |
|        | Internship*                        |           | -         | -                      | -                | -                      | -     |
|        | Total                              |           | 15        | 10                     | 15               | 6                      | 21    |
|        |                                    | -         |           |                        |                  | •                      |       |

#### Semester VI

#### **Examination Scheme Semester VI**

|                |                                    |                        |    | The  | eory       |                  |              |                 |       |
|----------------|------------------------------------|------------------------|----|------|------------|------------------|--------------|-----------------|-------|
| Course<br>Code | Course Name                        | Internal<br>Assessment |    |      | End<br>Sem | Exam<br>Duration | Term<br>Work | Pract /<br>Oral | Total |
|                |                                    | 1                      | 2  | Avg  | Exam       | (Hrs)            |              |                 |       |
| ET 309         | Wireless & Mobile<br>Communication | 40                     | 40 | 40   | 60         | 2                | -            | -               | 100   |
| ET 310         | Antenna Theory & Design            | 40                     | 40 | 40   | 60         | 2                | -            | -               | 100   |
| ET 311         | WM & AT Lab                        | -                      | -  | -    | -          | -                | 25           | 25              | 50    |
| ET 312         | R Programming                      | -                      | -  | -    | -          | -                | 25           | 25              | 50    |
| ET 3xx         | Elective II                        | 40                     | 40 | 40   | 60         | 2                | 25           | 25              | 150   |
| ET 3xx         | Elective III                       | 40                     | 40 | 40   | 60         | 2                | 25           | 25              | 150   |
| IL 3xx         | Institute Elective I               |                        |    | Cour | se Spec    | ific Assess      | ment         |                 | 100   |
| ET 392         | Major Project A                    | -                      | -  | -    | -          | -                | 50           | 50              | 100   |
|                | Internship*                        | -                      | -  | -    | -          | -                | -            | -               | -     |
|                | Total                              |                        |    |      |            |                  |              |                 |       |

T- Theory, L- Lab, P-Programming, C- Communication

\* Internship is desirable but not mandatory

In continuation with chosen department specialization, One department Elective is to be chosen from group I or group II

Second department Elective is to be chosen from group III or group IV Institute elective is to be chosen from any of the Institute level groups

| Semester VI<br>Electives       | Department Level Optional Courses (DLOC) |                              |                                        |                        |  |  |  |  |  |
|--------------------------------|------------------------------------------|------------------------------|----------------------------------------|------------------------|--|--|--|--|--|
|                                | Group I                                  | Group II                     | Group III                              | Group IV               |  |  |  |  |  |
| Specialization                 | ЮТ                                       | IOT Product Design           |                                        | Cloud<br>Computing     |  |  |  |  |  |
| <b>Course Code</b>             | ET 313                                   | ET 314                       | -                                      | -                      |  |  |  |  |  |
| Course Name<br>DLOC II         | Robotics and<br>Automation               | Electronic<br>Product Design | -                                      |                        |  |  |  |  |  |
| <b>Course Code</b>             | -                                        | -                            | ET 315                                 | ET 317                 |  |  |  |  |  |
| <b>Course Name</b><br>DLOC III | -                                        | -                            | Data Processing<br>and Coding          | Database<br>Management |  |  |  |  |  |
|                                |                                          |                              | ET 316                                 | ET 318                 |  |  |  |  |  |
|                                | TV & Video<br>Engineering                |                              | Computer<br>Communication<br>& Network |                        |  |  |  |  |  |

| Semester VI<br>Electives |                                         | Institu                           | te Level Opt          | ional Courses                                            | (ILOC)                                 |                                                      |
|--------------------------|-----------------------------------------|-----------------------------------|-----------------------|----------------------------------------------------------|----------------------------------------|------------------------------------------------------|
| ~                        | Group I                                 | Group II                          | Group III             | Group IV                                                 | Group V                                | Group VI                                             |
| Specialization           | Business<br>and<br>Entrepren<br>eurship | Bioengineering                    | Engineering<br>Design | Art and<br>Humanities                                    | Applied<br>Science                     | Life Skills,<br>Repair,<br>Maintenance<br>and Safety |
| Course Code              | IL 360                                  | IL362                             | IL363                 | IL 364                                                   | IL 366                                 | IL 368                                               |
| Course Name<br>ILOC I    | Entrepre<br>neurship                    | Introduction to<br>Bioengineering | Product<br>Design     | Visual Art                                               | Computational<br>Physics               | Vehicle<br>Safety                                    |
|                          | IL 361                                  |                                   | r                     | IL 365                                                   | IL 367                                 | IL 369                                               |
|                          | IPR and<br>Patenting                    |                                   |                       | Journalism,<br>Media and<br>Communic<br>ation<br>studies | Polymers and<br>Polymeric<br>Materials | Maintenance<br>of<br>Electronics<br>Equipment        |
|                          |                                         |                                   |                       |                                                          |                                        |                                                      |

| Course<br>Code | Course Name                       | Course<br>Component | Teaching Scheme<br>(Contact Hours) |                        | Credits Assigned |                        |       |
|----------------|-----------------------------------|---------------------|------------------------------------|------------------------|------------------|------------------------|-------|
|                |                                   |                     | Theory                             | Practical<br>/Tutorial | Theory           | Practical<br>/Tutorial | Total |
| ET 401         | Microwave & RF<br>Design          | TL                  | 3                                  | 2                      | 3                | 1                      | 4     |
| ET 402         | Human Values and<br>Social Ethics | Т                   | 2                                  | -                      | 2                | -                      | 2     |
| ET 4xx         | Elective IV                       | TL                  | 3                                  | 2                      | 3                | 1                      | 4     |
| ET 4xx         | Elective V                        | TL                  | 3                                  | 2                      | 3                | 1                      | 4     |
| IL 4xx         | Institute Elective II             | Т                   | 3                                  | -                      | 3                | -                      | 3     |
| ET 491         | Major Project B                   | LC                  | -                                  | 8                      | -                | 4                      | 4     |
|                | Total                             |                     | 11                                 | 14                     | 14               | 7                      | 21    |

## Semester VII

#### Examination Scheme Semester VII

| Course | Course Name                       |        |                     | Theo | ory         |                   | Term<br>Work |       | Total |
|--------|-----------------------------------|--------|---------------------|------|-------------|-------------------|--------------|-------|-------|
| Code   |                                   | Interr | Internal Assessment |      |             |                   |              | /Oral |       |
|        |                                   | 1      | 2                   | Avg  | Sem<br>Exam | Duration<br>(Hrs) |              |       |       |
| ET 401 | Microwave & RF<br>Design          | 40     | 40                  | 40   | 60          | 2                 | 25           | 25    | 150   |
| ET 402 | Human Values and<br>Social Ethics | -      | -                   | -    | -           | -                 | 50           | -     | 50    |
| ET 4xx | Elective IV                       | 40     | 40                  | 40   | 60          | 2                 | 25           | 25    | 150   |
| ET 4xx | Elective V                        | 40     | 40                  | 40   | 60          | 2                 | 25           | 25    | 150   |
| IL 4xx | Institute Elective II             | 40     | 40                  | 40   | 60          | 2                 | -            | -     | 100   |
| ET 491 | Major Project B                   | -      | -                   | -    | -           | -                 | 100          | 50    | 150   |
|        | Total                             |        |                     |      |             |                   |              |       | 750   |

In continuation with chosen department specialization, one department Elective is to be chosen from group I.

In continuation with chosen department specialization, second department Elective is to be chosen from group II

In continuation with chosen department specialization, Institute elective is to be chosen from any of the Institute level groups

In continuation with chosen department specialization, Institute elective is to be chosen from any of the Institute level groups

| Semester VII   | Depa                    | rtment Level Optio                 | onal Courses (DLO                   | C)                  |
|----------------|-------------------------|------------------------------------|-------------------------------------|---------------------|
| Specialization | 1                       | 2                                  | 3                                   | 4                   |
|                | ΙΟΤ                     | Product<br>Design                  | Advanced<br>Communication<br>System | Cloud<br>Computing  |
| Course Code    | ET 404                  | ET 406                             | ET 407                              | ET 410              |
| Course Name    | AI In Neural<br>Network | Communication<br>System Design and | Speech and Audio<br>Processing      | Advanced<br>Network |
| DLOC-VII       | ET 405                  | Integration                        | ET 408                              | Technologies        |
| ET 4XX         | Wearable Devices        |                                    | Radar Engineering                   |                     |
|                | and Industrial IoT      |                                    | ET 409                              |                     |
|                | applications            |                                    | Optical<br>Communication            |                     |

| Semester VII<br>Electives     |                                                                     | Institute Level Optional Courses (ILOC) |                                     |                           |                         |                                                                                 |  |  |  |  |  |
|-------------------------------|---------------------------------------------------------------------|-----------------------------------------|-------------------------------------|---------------------------|-------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| Specialization                | Group I                                                             | Group II                                | Group<br>III                        | Group IV                  | Group V                 | Group VI                                                                        |  |  |  |  |  |
|                               | Business and<br>Entrepreneu<br>rship                                | Bioenginee<br>ring                      | Engineeri<br>ng<br>Design           | Art and<br>Humaniti<br>es | Applied<br>Science      | Life Skills,<br>Repair,<br>Maintenance<br>and Safety                            |  |  |  |  |  |
| Course Name                   | IL 470                                                              | IL 472                                  | IL 473                              | IL 474                    | IL 475                  | IL 476                                                                          |  |  |  |  |  |
| Course Code<br>ILOC<br>IL 4XX | E- Commerce<br>and<br>e-Business<br>IL 471<br>Business<br>analytics | Biomedical<br>Instrument<br>ation       | Design<br>for<br>sustainabi<br>lity | Political<br>Science      | Research<br>Methodology | Maintenance<br>of Mechanical<br>Equipment<br>IL 477<br>Cooking and<br>Nutrition |  |  |  |  |  |

#### **Bachelor of Technology in Electronics and Telecommunication**

| Course            | Correct Norma          | Course        |        | ng Scheme<br>ct Hours) | Credits Assigned |                        |       |  |
|-------------------|------------------------|---------------|--------|------------------------|------------------|------------------------|-------|--|
| Code              | Course Name            | Compo<br>nent | Theory | Practical<br>/Tutorial | Theory           | Practical<br>/Tutorial | Total |  |
| ET 4xx            | Elective VI            | TL            | 3      | 2                      | 3                | 1                      | 4     |  |
| IL 4xx            | Institute Elective III | Т             | 3      | -                      | 3                | -                      | 3     |  |
| ET 492            | Major Project C        | LC            | -      | 8                      | -                | 4                      | 4     |  |
| ET 493 Internship |                        |               |        | _                      | -                | 8                      | 8     |  |
| Total             |                        |               | 6      | 10                     | 6                | 13                     | 19    |  |

#### **Semester VIII**

# Examination Scheme Semester VIII

| Course | Course Name            |    |                    | The    | Term       |                  | Total |      |     |
|--------|------------------------|----|--------------------|--------|------------|------------------|-------|------|-----|
| Code   |                        |    | Interna<br>ssessme |        | End<br>Sem | Exam<br>Duration | Work  | Oral |     |
|        |                        | 1  | 2                  | Avg    | Exam       | (Hrs)            |       |      |     |
| ET 4xx | Elective VI            | 40 | 40                 | 40     | 60         | 2                | 25    | 25   | 150 |
| IL 4xx | Institute Elective III | 40 | 40                 | 40     | 60         | 2                | I     | -    | 100 |
| ET 492 | Major Project C        | -  | -                  | -      | -          | -                | 100   | 50   | 150 |
| ET 493 | Internship             | -  | -                  | -      | -          | -                | 100   | 100  | 200 |
|        |                        |    | Tota               | ıl     | -          |                  |       | •    | 600 |
| ET 493 | Internship             |    | -<br>Tota          | -<br>1 | -          | -                | 100   | 100  |     |

T- Theory, L- Lab, P-Programming, C- Communication, I - Internship

In continuation with chosen department specialization, Department Elective is to be chosen from group III or group IV

In continuation with chosen department specialization, Institute Elective is to be chosen from any of the Institute level groups

| Semester VIII                 |     | Department Level Optional Courses (DLOC) |                                                                  |                 |  |  |  |  |  |  |  |
|-------------------------------|-----|------------------------------------------|------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
| Specialization                | 1   | 2                                        | 3                                                                | 4               |  |  |  |  |  |  |  |
|                               | ΙΟΤ | Product<br>Design                        | Advanced<br>Communication System                                 | Cloud Computing |  |  |  |  |  |  |  |
| Course Code                   | -   | -                                        | ET 421                                                           | ET 424          |  |  |  |  |  |  |  |
| <b>Course Name</b><br>DLOC VI | -   | -                                        | Blockchain for<br>Communication<br>ET 422                        | Cloud Computing |  |  |  |  |  |  |  |
|                               |     |                                          | AIML in Communication<br>Systems<br>ET 423<br>MIMO System for 5G |                 |  |  |  |  |  |  |  |

| Semester VIII<br>Electives |                                                  | Institute                      | e Level Opti                                     | onal Courses          | (ILOC)             |                                                      |
|----------------------------|--------------------------------------------------|--------------------------------|--------------------------------------------------|-----------------------|--------------------|------------------------------------------------------|
| Specialization             | Group I                                          | Group II                       | Group III                                        | Group IV              | Group V            | Group VI                                             |
|                            | Business and<br>Entrepreneurs<br>hip             | Bioengineeri<br>ng             | Engineerin<br>g Design                           | Art and<br>Humanities | Applied<br>Science | Life Skills,<br>Repair,<br>Maintenance<br>and Safety |
| Course Code<br>Course Name | IL 480                                           | IL 481                         | IL 482                                           | IL 483                | IL 484             | IL 485                                               |
| ILOC III                   | Digital<br>Business<br>Management<br>and Digital | Medical<br>Image<br>Processing | Technolo<br>gies for<br>Rural<br>Developm<br>ent | Economics             | GIS and<br>Remote  | Physical<br>Education                                |
|                            |                                                  |                                |                                                  |                       | Sensing            | IL 486                                               |
|                            | Marketing                                        |                                |                                                  |                       |                    | Environmental<br>Management                          |
|                            |                                                  |                                |                                                  |                       |                    |                                                      |

| <b>Course Code</b> | Course Name               | Credits |
|--------------------|---------------------------|---------|
| <b>ET</b> 101      | Engineering Mathematics I | 3+1     |

The course is aimed

- 1. To develop the basic Mathematical skills of engineering students that are imperative for effective understanding of complex numbers in engineering subjects.
- 2. To acquaint students with the hyperbolic, logarithmic functions.
- 3. To understand differentiation and expansions of functions which will serve as basic tools for specialized studies in many fields of engineering and technology.
- 4. To learn the partial differentiation techniques and its applications used in engineering problems.
- 5. To learn the applications of Matrices useful in engineering.
- 6. To provide hands on experience using SCILAB software to handle Mathematical modelling.

#### **Course Outcomes:**

On successful completion of course learner/student will be able to

- 1. Apply the basic concept of complex numbers and use it to solve problems in engineering.
- 2. Apply the basic concept of Hyperbolic and logarithmic functions in engineering problems.
- 3. Apply the concept of expansion of functions, successive differentiation and vector differentiation in optimization problems.
- 4. Use the basic concepts of partial differentiation in finding the Maxima and Minima required in engineering problems.
- 5. Use the concept of matrices in solving the system of equations used in many areas of research.
- 6. Apply the concept of numerical Methods for solving the engineering problems with the help of SCILAB software.

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs.        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1      | <ul> <li>Complex Numbers</li> <li>Pre-requisite: Review of Complex Numbers-Algebra of Complex Number, Cartesian, polar and exponential form of complex number.</li> <li>1.1. De Moivre's Theorem.(Without Proof)</li> <li>1.2. Expansion of sinnθ, cosnθ in terms of sines and cosines of multiples of θ and Expansion of sinnθ, cosnθ in powers of sinθ, cosθ</li> <li>1.3. Powers and Roots of complex number.</li> </ul> | 2<br>2<br>2 |
| 2      | <ul> <li>Hyperbolic function and Logarithm of Complex Numbers</li> <li>2.1 Introduction to Hyperbolic and Inverse Hyperbolic functions and simple examples.</li> <li>2.2 Logarithmic functions, Separation of real and Imaginary parts of Logarithmic Functions</li> </ul>                                                                                                                                                  | 3<br>3      |

|   | Successive Differentiation, Expansion of Function and Vector                     |   |  |
|---|----------------------------------------------------------------------------------|---|--|
|   | Differentiation                                                                  |   |  |
| 3 | Pre-requisite: Derivative of standard functions and Rules of derivative.         |   |  |
|   | 3.1 Successive differentiation: nth derivative of standard functions. Leibnitz's | c |  |
|   | Theorem (without proof) and problems                                             | Z |  |

|   | 3.2 Taylor's Theorem (Statement only) and Taylor's series, Maclaurin's series (Statement only). Expansion of $\Box^{(\Box)}$ , $\sin(x)$ , $\cos(x)$ , $\tan(x)$ , $\sinh(x)$ , $\cosh(x)$ , |   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | $tanh(x), log(1+x), sin-1(\Box), cos-1(\Box), tan-1(\Box).$                                                                                                                                  | 2 |
|   | 3.3 Vector function of scalar quantities, Vector operator del, gradient, Grad                                                                                                                | - |
|   | Phi,Directional derivatives.Divergence and curl and their Physical interpretation                                                                                                            |   |
|   | This Directional derivatives. Divergence and earrand them Thysical interpretation                                                                                                            | 2 |
|   | Partial Differentiation and Applications of Partial Differentiation.                                                                                                                         |   |
|   | 4.1 Partial Differentiation: Function of several variables, Partial derivatives of                                                                                                           | 4 |
|   | first and higher order. Differentiation of composite function.                                                                                                                               |   |
| 4 | 4.2. Euler's Theorem on Homogeneous functions with two independent                                                                                                                           |   |
| 4 | variables (without proof). Deductions from Euler's Theorem.                                                                                                                                  |   |
|   | 4.3 Maxima and Minima of a function of two independent variables,                                                                                                                            | 2 |
|   | Lagrange's method of undetermined multipliers with one constraint.                                                                                                                           |   |
|   | Jacobian of two independent variables.                                                                                                                                                       |   |
|   | Matrices :                                                                                                                                                                                   |   |
|   | Pre-requisite: Inverse of a matrix, addition, multiplication and transpose of a                                                                                                              |   |
|   | matrix, Elementary row and column transformation                                                                                                                                             | 2 |
|   | 5.1.Symmetric, Skew- Symmetric, Hermitian, Skew Hermitian, Unitary,                                                                                                                          |   |
| 5 | Orthogonal Matrices and properties of Matrices (Without Proof).                                                                                                                              | 2 |
|   | 5.2 Rank of a Matrix using Echelon forms, reduction to normal form and PAQ                                                                                                                   |   |
|   | form.                                                                                                                                                                                        | 2 |
|   | 5.3.System of homogeneous and non -homogeneous equations, their                                                                                                                              |   |
|   | consistency and solutions.                                                                                                                                                                   |   |
|   | Numerical Methods                                                                                                                                                                            |   |
|   | 6.1 Solution of system of linear algebraic equations,                                                                                                                                        | 3 |
| 6 | (1) Gauss Elimination,(2)Gauss Jacobi Iteration Method (3) Gauss Seidel                                                                                                                      |   |
| 6 | Iteration Method,                                                                                                                                                                            |   |
|   | 6.2 Solutions of Transcendental equations                                                                                                                                                    | 3 |
|   | (1) Bisection method (2) Secant Method (3) Newton Raphson                                                                                                                                    |   |

#### **List of Practicals**

- 1. Basic Mathematical Operations, Functions and Introduction to Programming in Scilab
- 2. Basic operations on Matrices
- 3. Programing on Gauss Elimination Method
- 4. Programing on Gauss Jacobi Method
- 5. Programing on Gauss Seidal Method
- 6. Programing on Numerical Solution of transcendental Equations by Bisection Method
- 7. Programing on Numerical Solution of transcendental Equations by Newton Raphson Method
- 8. Programing on Numerical Solution of transcendental Equations by Secant Method
- 9. Programing on Maxima and Minima of functions

#### List of Assignments

- 1. Complex Numbers
- 2. Hyperbolic and Logarithmic Functions
- 3. Successive Differentiation and Expansion of Functions
- 4. Partial Differentiation
- 5. Applications of Partial Differentiation
- 6. Matrices
- 7. Numerical solution of system of linear equations and transcendental equations

#### **Theory Assessment:**

#### **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be Department of Electronics and Telecommunication Engineering - Syllabus for Undergraduate Programme

#### the average score of both the tests.

#### **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

#### **References:**

- 1. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley EasternLimited, 9thEd.
- 3. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication, Matrices, Shanti Narayan, S. Chand publication.
- 4. Applied Numerical Methods with MATLAB for Engineers and Scientists by Steven Chapra,McGraw Hill

Back to Scheme

| Course Code | Course Name                  | Credits |
|-------------|------------------------------|---------|
| ET 102      | <b>Engineering Physics I</b> | 2+0.5   |

- 1. To impart knowledge of basic concepts in applied physics and founding principles of technology.
- 2. To provide the knowledge and methodology necessary for solving problems in the field of engineering.
- 3. To develop scientific temperament for scientific observations, recording, and inference drawing essential for technology studies.

#### **Course Outcomes:**

Upon successful completion of this course, the learner will be able to

- 1. Explain the limits of Classical Physics and apply the fundamentals of quantum mechanics to study the one dimensional motion of microscopic particles.
- 2. Apply the knowledge of superconductivity to SQUID and Magnetic levitation.
- 3. Able to understand fundamental concepts of classical optics and applications of interference in science and technology.
- 4. Analyze the intensity variation of light due to Polarization and its use in various applications
- 5. Comprehend the concepts of electrodynamics and Maxwell's equations and their use in telecommunication systems.
- 6. Apply the concepts of electromagnetism in focusing systems and CRO.

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs. |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.     | <b>Quantum Mechanics:</b><br>Dimensional infinite potential well, Quantum Computing. De Broglie<br>hypothesis of matter waves; properties of matter waves; wave packet,<br>phase velocity and group velocity; Wave function; Physical<br>interpretation of wave function; Heisenberg uncertainty principle; non<br>existence of electron in nucleus; Schrodinger's time dependent wave<br>equation; time independent wave equation; Free electron, Particle<br>trapped in one                                                                                                                                | 6    |
| 2.     | Superconductivity:<br>Critical temperature, critical magnetic field, Meissner's effect, Type I<br>and Type II and high Tc superconductors; BCS Theory (concept of<br>Cooper pair); Josephson effect.<br>Applications of superconductors- SQUID, MAGLEV                                                                                                                                                                                                                                                                                                                                                       | 3    |
| 3.     | <b>Thin Film Interference :</b><br>Interference by division of amplitude and by division of wave front;<br>Interference in thin film of constant thickness due to reflected and<br>transmitted light; origin of colours in thin film; Wedge shaped film(angle<br>of wedge and thickness measurement); Newton's rings Applications of<br>interference - Determination of thickness of very thin wire or foil;<br>determination of refractive index of liquid; wavelength of incident light;<br>radius of curvature of lens; testing of surface flatness; Anti-reflecting<br>films and Highly reflecting film. | 6    |

| 4. | <b>Polarisation of Light:</b><br>Introduction, polarisation of light, Representation of plane polarised<br>light, partially polarised light, Production of plane polarised light by i)<br>Reflection (Brewster's Law), ii)Refraction (pile of plates), iii) Double<br>Refraction (Nicol Prism), iv) Selective Absorption(Dichroism), HWP,<br>QWP, Optically active materials and their applications like polaroids,<br>LCD. | 4 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 5. | <b>Electrodynamics:</b><br>Scalar and vector fields, Cartesian, Cylindrical and Spherical Coordinate<br>system, gradient, curl and divergence in Cartesian coordinate system,<br>line integral, surface integral, volume integral, divergence theorem,<br>Stoke's theorem, Maxwell's Equations.                                                                                                                             | 4 |
| 6. | <b>Electron Optics:</b><br>Electrostatic focusing , Magnetostatic focusing, Cathode Ray<br>Tube(CRT), Construction and working of CRO. Lissajous figures.                                                                                                                                                                                                                                                                   | 2 |

#### Lab Objectives:

- 1. To improve the knowledge about the theory learned in the class.
- 2. To improve ability to analyze experimental results and write laboratory reports.

#### Lab Outcomes:

Learners will be able to

- 1. Perform the experiments based on interference in thin films and analyze the results.
- 2. Perform the experiments based on polarisation of light and analyze the results.
- 3. Able to measure frequency and amplitude of a given electrical signal using CRO.

#### Suggested Experiments: (Any five)

- 1. Determination of radius of curvature of a lens using Newton's ring set up
- 2. Determination of diameter of wire/hair or thickness of paper using Wedge shape film method and estimation of Young's modulus of the material.
- 3. Brewster's law (Polarisation of light by reflection through glass slab.)
- 4. To study the nature of polarisation of laser light using photocell and quarter wave plate (QWP)
- 5. Use of CRO for measurement of frequency and amplitude.
- 6. Determination of unknown frequency by Lissajous figures.

#### Theory Assessment:

#### **Internal Assessment: 30 marks**

Consisting of Two compulsory internal assessments 30 Marks each. The final marks will be average of score of both the tests.

#### **End Semester Examination: 45 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall

performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

#### **Books/References:**

- 1. A text book of Engineering Physics-Avadhanulu & Kshirsagar, S. Chand
- 2. A textbook of Optics N. Subramanyam and Brijlal, S.Chand
- 3. Fundamentals of optics by Jenkins and White, McGrawHill
- 4. Modern Engineering Physics Vasudeva, S.Chand
- 5. Concepts of Modern Physics- ArtherBeiser, Tata McGraw Hill
- 6. A TextBook of Engineering Physics, S. O. Pillai, New Age International Publishers
- 7. Optics Ajay Ghatak, Tata McGraw Hill8. Introduction to Electrodynamics- D. J. Griffiths, Pearson publication
- 8. Introduction to Electrodynamics- D. J. Griffiths, Pearson publication
- 9. Physics for Engineers, M.R. Srinivasan, New Age International Put ishe 1.

Back to Scheme

| Course Code | Course Name             | Credits |
|-------------|-------------------------|---------|
| ET 103      | Engineering Chemistry I | 2+0.5   |

- 1. To impart a scientific approach and to familiarize the applications of chemistry in the field of engineering.
- 2. The student with the knowledge of the basic chemistry, will understand and explain scientifically the various problems related to chemistry in the industry/engineering field.
- 3. To develop abilities and skills that are relevant to the study and practice of chemistry.

#### **Course Outcomes:**

On successful completion of course learner/student will be able to

- 1. To understand and analyse the combustion mechanisms of various fuels and be able to characterize the fuels.
- 2. To select various lubricants for different industrial applications.
- 3. To become familiarized with corrosion forms and their effects and to recognize and use the method of corrosion protection.
- 4. To analyse the quality of water and will be able to suggest methods to improve water quality.
- 5. To assess the environmental impact and understand the methods for their minimisation.

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | <b>Fuels and Combustion</b><br><b>Pre-requisite:</b> What are fuels, Types of fuels, Characteristics of fuels.<br>1.1. Calorific value of a fuel - HCV and LCV, Theoretical determination of<br>calorific value of fuel by Dulong's formula, Numerical problems<br>1.2 Solid fuels : Coal, Analysis of coal - Proximate and Ultimate analysis,<br>Numerical problems<br>Liquid fuels: Composition and classification, Octane number, Cetane<br>number, Biodiesel                                                                                                                                    | 5    |
|        | Gaseous Fuels:, LPG and CNG<br>1.3. Combustion of fuels – Numerical problems for calculating the amount of<br>air needed for the complete combustion of solid and gaseous fuels.                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 2      | Lubricants<br>Pre - requisites : Definition of Lubricants and Lubrication, functions of<br>lubricants<br>2.1 Mechanisms of lubrication – Thick film, Thin film and Extreme pressure<br>2.2 Classification of lubricants - Solid (MoS <sub>2</sub> , graphite), Semi solid (greases),<br>Liquid (animal/vegetable oils, mineral oils, synthetic oils)<br>2.3 Properties of lubricants and their significance - Viscosity and Viscosity<br>Index, Flash and Fire Points, Cloud and Pour Points, Acid Number,<br>Saponification Number, Steam Emulsification Number and related numerical<br>problems. | 4    |
| 3      | <b>Corrosion</b><br><b>Pre-requisite:-</b> corrosion, corrosion product, electrochemical series, corrosive and non corrosive metals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4    |

|   | <ul> <li>3.1 Mechanism of corrosion - Chemical and Electrochemical corrosion.</li> <li>3.2 Types of corrosion : Galvanic corrosion, Differential aeration corrosion, Pitting corrosion, Intergranular corrosion, Waterline corrosion, Stress corrosion.</li> <li>3.3 Factors Affecting Corrosion Rate : - (i) Nature of metal, (ii) Nature of environment.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | <ul> <li>Corrosion Control</li> <li>4.1 Methods of Corrosion Control : Material selection, Design, Cathodic protection, Anodic protection</li> <li>4.2 Protective Coatings: Metallic coatings anodic coating (galvanizing) and cathodic coating (Tinning), Different Methods of Applying Metallic Coatings (No explanation needed)</li> <li>4.3 Organic coatings – Paints and Special Paints.</li> </ul>                                                                                                                                                                                                                                                                                                                                  | 3 |
| 5 | <ul> <li>Water and its Treatment</li> <li>Pre-requisite : Knowledge of sources of water, Possible impurities in water,<br/>Characteristics imparted by impurities in water.</li> <li>5.1 Hardness in water – types &amp; its units, Determination of hardness by<br/>EDTA method, and numerical problems.</li> <li>5.2. Effects of Hard water in boilers - Priming and Foaming, Scales and<br/>Sludges, Boiler corrosion, caustic embrittlement,</li> <li>5.3 Softening of water- Ion exchange process.</li> <li>5.4 Desalination of brackish water- Reverse Osmosis, Electrodialysis,<br/>Ultrafiltration .</li> <li>5.5 Municipal water treatment – Primary, secondary and tertiary, BIS<br/>specification of drinking water</li> </ul> | 5 |
| 6 | <ul> <li>Environmental And Green Chemistry</li> <li>Pre- requisites: Definition of Environment and Primary concept of environmental pollution.</li> <li>6.1 Concept and Scope of Environmental Chemistry.</li> <li>6.2 Environmental Pollution and Control -</li> <li>Water pollution - BOD and COD, determination and numerical problems.</li> <li>E- pollution and N- pollution</li> <li>6.3 Concept of 12 principles of Green chemistry, discussion with examples, numericals on atom economy.</li> </ul>                                                                                                                                                                                                                              | 3 |

#### Lab Objectives:

- 1. Provide the students with a basic understanding in the Chemistry laboratory required to solve engineering problems.
- 2. Learn to design and carry out experiments as well as accurately record and analyze the results of such experiments.

#### Lab Outcomes:

The student will be able to

- 1. Analyse & generate experimental skills.
- 2. Anhance the thinking capabilities in the modern trends in Engineering & Technology.
- 3. Learn and apply basic techniques used in chemistry laboratories for preparation, purification and identification.
- 4. Learn safety rules in the practice of laboratory investigations.

#### List of Experiments:

- 1. Determination of Hardness in water
- 2. Determination of Viscosity of oil by Redwood Viscometer

- 3. Determination of Flash point of a lubricant using Abel's apparatus
- 4. Determination of Acid Value and Saponification Value of an oil.
- 5. Determination of Chloride content of water by Mohr's Method
- 6. Determination of moisture content in coal sample.
- 7. Study of the effect of different environments (Acid, Base) on corrosion rate.
- 8. Determination of COD Value of water.
- 9. Removal of hardness using ion exchange column.
- 10. Calorific value of liquid fuel

#### **Theory Assessment:**

#### **Internal Assessment: 30 marks**

Consisting of Two compulsory internal assessments 30 Marks each. The final marks will be average of score of both the tests.

#### End Semester Examination: 45 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

#### **Books/References:**

- 1. Engineering Chemistry P.C.Jain and Monika Jain, Dhanpat Rai Publications
- 2. A Textbook of Engineering Chemistry, Shashi Chawla(DhanpatRai publications)
- 3. A textbook of Engineering Chemistry S.S. Dara, S. Chand Publishing House
- 4. Engineering Chemistry O.G. Palanna, Tata Mc Graw Hill
- 5. Essential of Physical Chemistry by Arun Bahl, B S Bahl & G D Tuli
- 6. Environmental Chemistry A.K.De, New Age International

Back to Scheme

| Course Code | Course Name                  | Credits |
|-------------|------------------------------|---------|
| ET 104      | <b>Engineering Mechanics</b> | 3+1     |

The course is aimed

- 1. To develop the capacity to predict the effects of force and motion and to acquaint the concept of static and dynamic equilibrium.
- 2. Ability to visualize physical configurations in terms of actual systems and it's constraints, and able to formulate the mathematical function of the system.
- 3. To study, analyse and formulate the motion of moving particles/bodies.

#### **Course Outcomes:**

On successful completion of course learner/student will be able to

- 1. The ability to verify the law of moments and draw Free Body Diagram and label the reactions on it.
- 2. Determine the centroid and MI of plane lamina.
- 3. Makes the students able to apply equilibrium equations in statics.
- 4. Evaluate co-efficient of friction between the different surfaces in contact.
- 5. The ability to understand Newton's law in motion, and recognize different kinds of particle motions.

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|        | Coplanar and Non-Coplanar Force System and Resultant:                                                                                                                                                                                                                                                                                                                                                                                             | 08   |
|        | 1.1 System of Coplanar Forces: Classification of force systems,<br>Principle of transmissibility, composition and resolution of forces.                                                                                                                                                                                                                                                                                                           | 02   |
| 1      | 1.2 Resultant: Resultant of coplanar and non-coplanar force system (Concurrent forces, parallel forces and non-concurrent Non-parallel system of forces). Moment of force about a point, Couples, Varignon's Theorem. Force couple system. Distributed Forces in plane.                                                                                                                                                                           | 03   |
|        | 1.3 Equilibrium of System of Coplanar Forces and Beams: Conditions<br>of equilibrium for concurrent forces, parallel forces and non-concurrent<br>non- parallel general forces and Couples. Equilibrium of rigid bodiesfree<br>body diagrams. Types of beams, simple and compound beams, type of<br>supports and reaction. Determination of reactions at supports for various<br>types of loads on beams. (Including problems on internal hinges) | 03   |
|        | Centroid and MI:                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05   |
| 2      | 2.1 First moment of Area, Centroid of composite plane Laminas                                                                                                                                                                                                                                                                                                                                                                                     | 02   |
|        | 2.2 Second moment of Area, MI of composite plane Laminas                                                                                                                                                                                                                                                                                                                                                                                          | 03   |
|        | Forces in Space:                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05   |
| 3      | 3.1 System of Non-Coplanar Force System                                                                                                                                                                                                                                                                                                                                                                                                           | 02   |
|        | 3.2 Resultant of Non-Coplanar Force System                                                                                                                                                                                                                                                                                                                                                                                                        | 03   |
|        | Friction:                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06   |
|        | 4.1 Static and Dynamic Friction: Systems of Statics and Dynamic/Kinetic                                                                                                                                                                                                                                                                                                                                                                           | 02   |
|        | Friction, Coefficient of Friction, Angle of Friction, Laws of friction.                                                                                                                                                                                                                                                                                                                                                                           |      |
| 4      | Concept of Cone of friction.                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|        | 4.2 Wedge Friction: Equilibrium of bodies on inclined plane. Application to problems involving wedges and ladders.                                                                                                                                                                                                                                                                                                                                | 02   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02   |

|   | 4.3 Rope and Belt Friction: Block Friction including Rope and Belt Friction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 5 | <b>Kinematics of Particle and Rigid Body:</b><br>5.1 Kinematics of Particle and Rigid Body: Motion of particle with variable<br>acceleration. General curvilinear motion. Tangential & Normal component<br>of acceleration, Motion curves (a-t, v-t, s-t curves). Application of concepts<br>of projectile motion and related numerical.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>06</b><br>03      |
|   | 5.2 Kinematics of Rigid Body: Translation, Rotation and General Plane motion of Rigid body. The concept of Instantaneous center of rotation (ICR) for the velocity. Location of ICR of mechanism. Velocity analysis of rigid body using ICR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 03                   |
| 6 | <ul> <li>Kinetics of a Particle:</li> <li>6.1 Kinetics of a Particle: Force and Acceleration: -Introduction to basic concepts, D'Alemberts Principle, concept of Inertia force, Equations of dynamic equilibrium, Newton's second law of motion. (Analysis limited to simple systems only.)</li> <li>6.2 Kinetics of a Particle: Work and Energy: Work Energy principle for a particle in motion. Application of Work – Energy principle to a system consists of connected masses and Springs.</li> <li>6.3 Kinetics of a Particle: Impulse and Momentum: Principle of linear impulse and momentum. Impact and collision: Law of conservation of momentum, Coefficient of Restitution. Direct Central Impact and Oblique Central Impact. Loss of Kinetic Energy in collision of inelastic bodies.</li> </ul> | 06<br>02<br>02<br>02 |

#### Lab Objectives:

- 1. To acquaint the concept of equilibrium in two- and three-dimensional system.
- 2. To study and analyse motion of moving particles/bodies.

#### Lab Outcomes:

Learners will be able to

- 1. Verify equations of equilibrium of coplanar force system
- 2. Verify the law of moments.
- 3. Determine the centroid of plane lamina.
- 4. Evaluate co-efficient of friction between the different surfaces in contact.
- 5. Demonstrate the types of collision/impact and determine corresponding coefficient of restitution.
- 6. Differentiate the kinematics and kinetics of a particle.

#### List of Experiments:

Minimum six experiments from the following list of which minimum one should from dynamics.

- 1. Verification of Polygon law of coplanar forces
- 2. Verification of Principle of Moments (Bell crank lever.)
- 3. Determination of support reactions of a Simply Supported Beam.
- 4. Determination of coefficient of friction) using inclined plane
- 5. Collision of elastic bodies (Law of conservation of momentum).
- 6. Kinematics of particles. (Uniform motion of a particle, Projectile motion, motion under gravity)
- 7. Kinetics of particles. (Collision of bodies)

#### Theory Assessment:

#### **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

#### End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum

#### Lab Assessments:

**1Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

**Oral/Viva Assessment** : The practical and oral examination will be based on the entire syllabus.

#### **Books/References:**

- 1. Engineering Mechanics by Beer & Johnston, Tata McGrawHill
- 2. Engineering Mechanics (Statics) by Meriam and Kraige, WileyBools
- 3. Engineering Mechanics (Dynamics) by Meriam and Kraige, WileyBools
- 4. Engineering Mechanics by F. L. Singer, Harper& RawPublication
- 5. Engineering Mechanics by ShaumSeries

Back to Scheme

| Course Code | Course Name                  | Credits |
|-------------|------------------------------|---------|
| ET 105      | Basic Electrical Engineering | 3+1     |

The course is aimed

- 1. To provide knowledge on fundamentals of D.C. circuits.
- 2. To provide knowledge of D.C network theorems and its applications.
- 3. To impart knowledge on fundamentals of A.C. circuits
- 4. To impart knowledge on fundamentals of single phase A.C circuits and its applications.
- 5. To impart knowledge on fundamentals of  $3-\Phi$  A.C. circuits and its applications.
- 6. To impart knowledge on basic operation and applications of electrical machines.

#### **Course Outcomes:**

On successful completion of course learner/student will be able to

- 1. Apply basic concepts to analyse D.C circuits.
- 2. Apply various D.C network theorems to determine the circuit response/ behavior.
- 3. Apply basic concepts to analyze A.C waveforms.
- 4. Evaluate and analyze single phase A.C circuits.
- 5. Evaluate and analyze three phase A.C circuits.
- 6. Understand the constructional features and operation of electrical machines.

| Module | Detailed Contents                                                                                                                                                                                                                                                                        | Hrs. |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | <b>DC Circuits</b><br>Series and Parallel circuits, Concept of short and open circuits,Star-delta transformation, Ideal and practical voltage and current source,Kirchhoff 's laws, Mesh and Nodal analysis (super node and super mesh included), Source transformation.                 | 6    |
| 2      | <b>DC Theorems</b><br>Linear and Nonlinear Circuit,Active and passive network,Superposition<br>theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer<br>theorem, (Source transformation not allowed for Superposition theorem).                                          | 6    |
| 3      | AC fundamentals<br>Generation of alternating voltages, A.C terminology, RMS and Average value,<br>form factor, crest factor, Phasor representation of alternating quantities,<br>addition and subtraction of alternating quantities using phasors.                                       | 3    |
| 4      | <b>Single Phase AC Circuits</b><br>AC through pure resistor, inductor and capacitor. AC through R-L, R-C and<br>R-L-C series and parallel circuits, phasor diagrams, power and power factor,<br>series and parallel resonance, Q-factor.                                                 | 7    |
| 5      | Three Phase AC Circuits<br>Three phase voltage and current generation, star and delta connections<br>(balanced load only), relationship between phase and line currents and<br>voltages, Phasor diagrams, Basic principle of wattmeter, measurement of<br>power by two wattmeter method. | 6    |
| 6      | <b>Electrical Machines</b> Working principle of single-phase transformer, EMF equation of a transformer, Transformer losses, Phasor diagram, Equivalent circuit, Efficiency.                                                                                                             | 8    |

| ٠ | Principle of operation, construction and classification of DC machines, |  |
|---|-------------------------------------------------------------------------|--|
|   | emf equation, speed control of DC motors and its applications.          |  |
| • | Principle of operation of Single-Phase induction motors, stepper motors |  |
|   | and their applications.                                                 |  |

#### Lab Objectives:

1. Provide the students with a basic understanding in the Basic Electrical laboratory required to solve engineering problems.

Lab Outcomes: The student will be able to.

- 1. Compute electrical parameters for the given circuit using network theorem
- 2. Verify the resonance phenomenon for a given RLC circuit
- 3. Measure three phase power
- 4. Illustrate the performance of electrical machines

#### List of Experiments

- 1. Mesh and Nodal analysis.
- 2. Verification of Superposition Theorem.
- 3. Verification Thevenin's Theorem.
- 4. Study of R-L series and R-C series circuits.
- 5. R-L-C series resonance circuit
- 6. R-L-C parallel resonance circuit.
- 7. Relationship between phase and line currents and voltages in three phase system (star & delta)
- 8. Power and phase measurement in a three phase system by one wattmeter method.
- 9. Power and phase measurement in a three phase system by two wattmeter methods.
- 10. To demonstrate cut-out sections of the DC machine.
- 11. To control the speed of the DC motor.

#### Theory Assessment:

#### **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

#### End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

**Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

#### **References:**

1. B.L.Theraja "Electrical Technology" Vol-I and II, S. Chand Publications, 23 rd ed. 2003.

- 2. Joseph A Edminister, "Schaum"s outline of theory and problems of electric circuits" Tata McGraw Hill, 2 nd edition
- 3. D P Kothari and I J Nagrath "Theory and Problems of Basic Electrical Engineering", PHI 13 th edition 2011.

#### **Textbooks:**

- 1. "Basic Electrical Engineering", by Prof. B. R. Patil, Oxford Higher Education
- 2. "Basic Electrical Engineering (BEE)", by Prof.Ravish Singh", McGraw Hill Education

Back to Scheme

| Course<br>Code | Course Name                  | Credits |
|----------------|------------------------------|---------|
| ET 106         | Basic Engineering Workshop I | 1.5     |

- 1. To impart training to help the students develop engineering skill sets.
- 2. To inculcate respect for physical work and hard labor.
- 3. To get exposure to interdisciplinary engineering domain.

Course Outcomes: Learners will be able to...

- 1. Develop the necessary skill required to handle/use different fitting tools.
- 2. Develop skill required for hardware maintenance.
- 3. Able to install an operating system and system drives.
- 4. Able to identify the network components and perform basic networking and crimping.
- 5. Able to prepare the edges of jobs and do simple arc welding.
- 6. Develop the necessary skill required to handle/use different plumping tools.
- 7. Demonstrate the turning operation with the help of a simple job.

| Trade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs. |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ПГS. |  |
| Note:<br>Trade 1 and 2 are compulsory. Select any ONE trade topics out of the topic at trade 3 to 5.<br>Demonstrations and hands on experience to be provided during the periods allotted for the same.<br>Report on the demonstration including suitable sketches is also to be included in the term work<br>CO-1 is related to Trade-1<br>CO-2 to CO-4 is related to Trade-2<br>CO-5 is related to Trade-3<br>CO-6 is related to Trade-4<br>CO-7 is related to Trade-5<br>CO evaluation is to be done according to the opted Trades in addition to <b>Compulsory Trades.</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
| Trade-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Fitting (Compulsory):</li> <li>Use and setting of fitting tools for chipping, cutting, filing, marking, center punching, drilling, tapping.</li> <li>Term work to include one job involving following operations : filing to size, one simple male- female joint, drilling and tapping</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10   |  |
| Trade-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hardware and Networking: (Compulsory)<br>Dismantling of a Personal Computer (PC), Identification of Components<br>of a PC such as power supply, motherboard, processor, hard disk,<br>memory (RAM, ROM), CMOS battery, CD drive, monitor, keyboard,<br>mouse, printer, scanner, pen drives, disk drives etc. · Assembling of PC,<br>Installation of Operating System (Any one) and Device drivers, Boot-up<br>sequence. Installation of application software (at least one) · Basic<br>troubleshooting and maintenance · Identification of network components:<br>LAN card, wireless card, switch, hub, router, different types of network<br>cables (straight cables, crossover cables, rollover cables) Basic<br>networking and crimping. NOTE: Hands on experience to be given in a<br>group of not more than four students | 08   |  |

| Trade-3 | <b>Welding:</b><br>Edge preparation for welding jobs. Arc welding for different job like, Lap welding of two plates, butt welding of plates with simple cover, arc welding to join plates at right angles.           | 06 |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Trade 4 | <b>Plumbing:</b><br>Use of plumbing tools, spanners, wrenches, threading dies, demonstration<br>of preparation of a domestic line involving fixing of a water tap and use<br>of coupling, elbow, tee, and union etc. | 06 |
| Trade-5 | Machine Shop:<br>At least one turning job is to be demonstrated and simple job to be made<br>for Term Work in a group of 4 students.                                                                                 | 06 |

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorial and mini-projects (if included) are graded from time to time.

Back to Scheme

| Course Code | Course Name                       | Credits |
|-------------|-----------------------------------|---------|
| ET 107      | <b>Engineering Mathematics II</b> | 3+1     |

The course is aimed

- 1. To develop the basic mathematical skills of differential equations of engineering students
- 2. To understand the linear differential equation with constant coefficients used in mathematical modelling.
- 3. To acquaint the students with the Beta, Gamma functions and DUIS.
- 4. To learn different techniques to solve double integrations.
- 5. To learn the applications of integration in solving the complex engineering problems.
- 6. To provide knowledge of numerical techniques using SCILAB software to handle Mathematical modelling.

#### **Course Outcomes:**

On successful completion of course learner/student will be able to

- 1. Apply the basic concept of linear differential equations to solve problems in engineering.
- 2. Apply the basic concept of applications of higher order differential equations in mathematical modelling to solve real life problems.
- 3. Apply the basic concepts of beta, gamma and DUIS to solve engineering problems.
- 4. Apply the concept of double integration in solving problems of engineering and technology.
- 5. Apply the concept of double integrations to find length, area and volume.
- 6. Apply the concept of differentiation and integration numerically for solving the engineering problems with the help of SCILAB software.

| Module | Detailed Contents                                                                                                                                                                                 | Hrs. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|        | Differential Equations of First Order and First Degree:                                                                                                                                           |      |
|        | 1.1 Exact differential Equations, Equations reducible to exact form by using                                                                                                                      | 2    |
| 1      | integrating factors.                                                                                                                                                                              |      |
|        | 1.2 Linear differential equations, equations reducible to linear form.                                                                                                                            | 2    |
|        | 1.3 Application of differential equation of first order and first                                                                                                                                 |      |
|        | degree in engineering.                                                                                                                                                                            | 2    |
|        | Linear Differential Equations With Constant Coefficients and Variable                                                                                                                             |      |
| 2      | coefficients of higher order:                                                                                                                                                                     |      |
|        | 2.1. Linear Differential Equation with constant coefficient- complementary                                                                                                                        | 4    |
|        | function, particular integrals of differential equation of the type $f(D)y = X$                                                                                                                   |      |
|        | where X is $\square \square \square$ , sin( $\square \square + \square$ ), cos ( $\square \square + \square$ ), $\square \land n$ , $\square \land \square \square \square$ , $\square \square$ . |      |
|        | 2.2. Cauchy Differential equation, Method of variation of parameters two                                                                                                                          | 3    |
|        | variables                                                                                                                                                                                         |      |
|        | Beta and Gamma Function, Differentiation under Integral sign                                                                                                                                      |      |
| 3      | 3.1 Beta and Gamma functions and its properties.                                                                                                                                                  | 3    |
|        | 3.2 Differentiation under integral sign with constant limits of integration                                                                                                                       | 3    |
|        | (One parameter).                                                                                                                                                                                  |      |

| 4 | <ul> <li>Double Integration:</li> <li>Prerequisite: Tracing of curves</li> <li>4.1. Double integration- Evaluation of Double Integrals. (Cartesian &amp; Polar), Change of order of Integration and evaluation</li> <li>4.2. Evaluation of integrals over the given region. (Cartesian &amp; Polar)</li> <li>4.3. Evaluation of double integrals by changing to polar coordinates.</li> </ul> | 4<br>2<br>2 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5 | <ul> <li>Applications of integration :-</li> <li>5.1 Rectification of plane curves.(Cartesian and polar)</li> <li>5.2. Application of double integrals to compute Area</li> <li>5.3.Triple integration: Evaluation (Cartesian, cylindrical and spherical polar coordinates)</li> </ul>                                                                                                        | 2<br>2<br>2 |
| 6 | Numerical Techniques:-6.1. Numerical solution of ordinary differential equation(a) Euler's method (b) Modified Euler method, (c)Runge-Kutta fourth order6.2. Numerical integration-(a) Trapezoidal (b) Simpson's 1/3rd (c) Simpson's 3/8th rule                                                                                                                                               | 3           |

## **List of Practicals**

- 1. Euler's Method
- 2. Euler's Modified Method
- 3. Runge Kutta Fourth Order
- 4. Trapezoidal Rule
- 5. Simpson's 1/3rd Rule
- 6. Simpson's 3/8th Rule
- 7. Differential Equations
- 8. Integration

## List of Assignments

- 1. Differential equation first order and first degree
- 2. Linear differential equation with constant coefficients
- 3. Beta and Gamma Function and DUIS
- 4. Double integration
- 5. Triple integration and Applications of double integration
- 6. Numerical methods

## Theory Assessment:

## **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

## End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## Lab Assessments:

**Term workAssessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall

performance of the student with every experiment/tutorial and mini-projects (if included) are graded from time to time.

### **Books/References:**

- 1. Higher Engineering Mathematics, Dr.B.S.Grewal, Khanna Publication
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley EasternLimited, 9thEd.
- 3. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication,
- 4. Applied Numerical Methods with MATLAB for Engineers and Scientists by Steven Chapra, McGraw Hill .

| Course Code | Course Name            | Credits |
|-------------|------------------------|---------|
| ET 108      | Engineering Physics II | 2+0.5   |

## **Course Objectives:**

- 1. To impart knowledge of basic concepts in applied physics and founding principles of technology.
- 2. To provide the knowledge and methodology necessary for solving problems in the field of engineering.
- 3. To develop scientific temperament for scientific observations, recording, and inference drawing essential for technology studies.

Course Outcomes: Upon successful completion of this course, the learner will be able to

- 1. Explain the functioning of lasers and their various applications.
- 2. Able to explain the working principle of optical fibres and their applications especially in the field of communication.
- 3. To comprehend the basic concepts of semiconductor physics and apply the same to electronic devices.
- 4. To analyze digital logic processes and implement logical operations using various combinational logic circuits.
- 5. To analyze design and implement logical operations using various sequential logic circuits.
- 6. Interpret and explore basic sensing techniques for physical measurements in modern instruments.

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs. |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.     | Lasers :<br>Laser: spontaneous emission and stimulated emission; metastable state,<br>population inversion, types of pumping, resonant cavity, Einstein's<br>equations; Helium Neon laser; Nd:YAG laser; Semiconductor laser,<br>Applications of laser- Holography (construction and reconstruction of<br>holograms) and industrial applications(cutting, welding etc), Applications<br>in the medical field.                                              | 4    |
| 2.     | <b>Optical Fibres:</b><br>Working Principle and structure ,<br>Numerical Aperture for step index fibre; critical angle; angle of acceptance;<br>V number; number of modes of propagation; types of optical fibres.<br>Application: Fibre optic communication system; sensors (Pressure,<br>temperature, smoke, water level), applications in the medical field.                                                                                            | 4    |
| 3.     | Semiconductor Physics<br>Splitting of energy levels for band formation; Classification of<br>semiconductors(direct & indirect band gap, elemental and compound);<br>Conductivity, mobility, current density (drift & diffusion) in<br>semiconductors(n type and p type); Fermi Dirac distribution function; Fermi<br>energy level in intrinsic & extrinsic semiconductors; effect of impurity<br>concentration and temperature on fermi level; Fermi Level | 7    |

|    | diagram for p-n junction(unbiased, forward bias, reverse bias); Breakdown<br>mechanism (zener avalanche), Hall Effect<br>Applications of semiconductors: Rectifier diode, LED, Zener diode, Photo<br>diode, Photovoltaic cell, BJT, FET, SCR., MOSFET                                                                                                                                                                                               |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4. | <b>Logic gates and combinational Logic circuits:</b><br>Review of Binary,Octal and Hexadecimal Number systems and their<br>interconversion, Difference between analog and digital signal, Logic levels,<br>Digital logic gates,, Universal gates, Realization using NAND and NOR<br>gates, Half adder and Full adder circuit, MUX - DEMUX, ENCODERS and<br>DECODERS.                                                                                | 3 |
| 5. | Sequential Logic Circuits:<br>Flip Flops: R-S and J-K Flip Flops, Conversion of flip-flops to shift<br>registers. Counters: Up/Down and BCD counter.                                                                                                                                                                                                                                                                                                | 4 |
| 6. | <ul> <li>Physics of Sensors:</li> <li>Temperature Sensor- Resistance Temperature Detectors(RTDs) (PT-100)</li> <li>Pressure Transducers- Capacitive pressure transducer, Inductive pressure transducer.</li> <li>Piezoelectric transducers: Concept of piezoelectricity, use of piezoelectric transducer as ultrasonic generator and application of ultrasonic transducer for distance measurement, liquid and air velocity measurement.</li> </ul> | 3 |

## Lab Objectives:

- 1. To improve the knowledge about the theory learned in the class.
- 2. To improve ability to analyze experimental results and write laboratory reports.

## Lab Outcomes:

Learners will be able to

- 1. Perform the various experiments using laser source and analyze the results.
- 2. Perform the experiments using optical fibre to measure numerical aperture of a given fibre.
- 3. Perform the experiments on various semiconductor devices and analyze their characteristics.
- 4. Analyze, design and implement logical operations using various combinational and sequential logic circuits

## Suggested Experiments: (Any five)

- 1. Determination of number of lines on the grating surface using LASER Source.
- 2. Determination of Numerical Aperture of an optical fibre.
- 3. Determination of wavelength using Diffraction grating. (Laser source)
- 4. Determination of angular divergence of laser beam.
- 5. Study of Hall Effect.
- 6. Determination of energy band gap of semiconductor.
- 7. Study of I-V characteristics of LED.
- 8. Determination of 'h' using Photocell.
- 9. Study of I-V characteristics of semiconductor photodiode and determination of its spectral response.
- 10. Study of I-V characteristics of a photovoltaic solar cell and finding the efficiency.
- 11. Design AND, OR, NOT, EXOR, EXNOR gates using Universal gates: NAND and NOR
- 12. Implement Half adder, Full adder, Half subtractor and Full subtractor circuits.
- 13. Verify the truth table of different types of flip flops.

- 14. Design asynchronous/synchronous MOD N counter using IC7490.
- 15. Zener Diode as a voltage regulator.

#### **Internal Assessment: 30 marks**

Consisting of Two compulsory internal assessments 30 Marks each. The final marks will be the average score of both the tests.

#### End Semester Examination: 45 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorial and mini-projects (if included) are graded from time to time.

#### **Books/References:**

- 1. A text book of Engineering Physics-Avadhanulu & Kshirsagar, S. Chand
- 2. A textbook of Optics N. Subramanyam and Brijlal, S.Chand
- 3. Fundamentals of optics by Jenkins and White, McGrawHill
- 4. Modern Engineering Physics Vasudeva, S.Chand
- 5. Concepts of Modern Physics- ArtherBeiser, Tata McGraw Hill
- 6. A TextBook of Engineering Physics, S. O. Pillai, New Age International Publishers.
- 7. Optics Ajay Ghatak, Tata McGraw Hill
- 8. Solid State Electronic Devices- B. G. Streetman, Prentice Hall Publisher
- 9. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Education, Fourth Edition (2010).
- 10. Handbook of Modern Sensors Physics design and application- Jacob Fraden, Springer, AIP press.
- 11. Physics for Engineers, M.R. Srinivasan, New Age International Publishers.

| Course Code | Course Name              | Credits |
|-------------|--------------------------|---------|
| ET 109      | Engineering Chemistry II | 2+0.5   |

#### **Course objectives:**

- 1. With the knowledge of the basic chemistry, the student will be able to understand and explain scientifically the various chemistry related problems in the industry/engineering field.
- 2. The student will be able to understand the new developments and breakthroughs efficiently in engineering and technology.

## **Course outcomes:**

Students will be able to

- 1. To recognize the electrochemical processes and apply the concepts in electrochemistry.
- 2. To develop knowledge on electrochemical energy storage systems considering the operation and design of various battery technologies.
- 3. To identify various polymeric materials and their applications in engineering.
- 4. To acquire theoretical background of types of nanomaterials and their applications.
- 5. To acquire basic knowledge of the materials used in electronics
- 6. To describe the theoretical background of spectroscopic techniques such as NMR, IR, UV spectroscopy.

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs. |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | <ul> <li>Engineering Electrochemistry</li> <li>Pre-requisite: redox reaction, cell reaction, electrode and its type, salt bridge</li> <li>1.1. Electrode potential, electrode reaction, derivation of Nernst equation for</li> <li>single electrode potential, numerical problems</li> <li>1.2 Electrochemical cell -Weston standard Cadmium cell</li> <li>1.3 Reference electrodes -Introduction, Construction, working of SHE, Calomel</li> <li>electrode.</li> <li>1.4 Ion selective electrodes: Introduction, Construction and working of glass</li> <li>electrode,</li> <li>1.5 Electrochemical Sensors</li> </ul>                                                                      | 5    |
| 2      | <ul> <li>Battery Technology</li> <li>Pre- requisite : Electrochemical Reactions, Cell potential, Electrochemical series</li> <li>2.1 Introduction, classification – primary, secondary and reserve batteries. Characteristics – Capacity, Electricity storage density, energy efficiency, cycle life and shelf life.</li> <li>2.2 Construction, working and applications of Ni – Cd rechargeable batteries</li> <li>2.3 Lithium batteries - Introduction, construction, working and applications of Li-MnO2</li> <li>2.4 Fuel Cells: Introduction, classification of fuel cells, limitations &amp; advantages of fuel cells, Construction of Hydrogen oxygen alkaline fuel cells.</li> </ul> | 5    |
| 3      | <ul> <li>Polymeric Materials</li> <li>Pre-requisite : Polymer, Monomer, Polymerization, Degree of polymerisation,<br/>Classification of polymers, Mechanism of polymerisation.</li> <li>3.1 Molecular weight of polymers: number average and weight average,<br/>numerical problems., Polydispersity Index,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       | 5    |

| r |                                                                                       |   |  |  |
|---|---------------------------------------------------------------------------------------|---|--|--|
|   | 3.2 Polymer crystallinity - glass transition temperature and its significance         |   |  |  |
|   | 3.3 Thermoplastic & Thermosetting polymers- Characteristics                           |   |  |  |
|   | 3.4 Preparation, properties and uses of PMMA, Urea-Formaldehyde, Phenol               |   |  |  |
|   | formaldehyde                                                                          |   |  |  |
|   | 3.5 Conducting polymers – Types, Mechanism of conduction in polymers,                 |   |  |  |
|   | Examples, and applications.                                                           |   |  |  |
|   | 3.6. Polymers for electronics – Polymer resists for integrated circuit fabrications,  |   |  |  |
|   | lithography and photolithography,                                                     |   |  |  |
|   | 3.7. Polymer films in sensor applications                                             |   |  |  |
|   | Nanochemistry                                                                         | 4 |  |  |
|   | Pre-requisite: Concept of nano scale, definition of nanoparticles                     |   |  |  |
|   | 4.1. Importance of nano size, Properties of nanomaterials – Size, optical             |   |  |  |
|   | properties, magnetic properties, electrical properties.                               |   |  |  |
| 4 | 4.2 Nanoscale materials- carbon nanotubes, nano wires, fullerenes.                    |   |  |  |
|   | 4.3 Synthesis of Nano particles by Chemical vapor deposition (CVD) method             |   |  |  |
|   | and Laser Ablation Method                                                             |   |  |  |
|   | 4.4 Nano electronics                                                                  |   |  |  |
|   | 4.5 Applications of nano materials                                                    |   |  |  |
|   | Materials For Electronics                                                             |   |  |  |
|   | 6.1. Introduction, Electronic properties of materials, classification based on        |   |  |  |
| _ | conductivity of materials, Specific conducting materials (graphite, Au, Pt, Ag,       | 3 |  |  |
| 5 | Al, Cu and steel)                                                                     |   |  |  |
|   | 6.2. Factors influencing the conductivity of materials ,Applications of               |   |  |  |
|   | Optoelectronic and Dielectric materials.                                              |   |  |  |
|   | Spectroscopic Techniques                                                              |   |  |  |
|   | <b>Pre-requisites :</b> Electromagnetic radiation, characteristics of electromagnetic |   |  |  |
| 6 | radiation, electromagnetic spectrum.                                                  |   |  |  |
|   | 5.1. Spectroscopy - Principle, Interaction of radiation with matter, Selection rules. | 3 |  |  |
|   | 5.2 Types of spectroscopy: IR, UV, NMR, Emission Spectroscopy, (Flame                 |   |  |  |
|   | Photometry),                                                                          |   |  |  |
|   | 5.3 Fluorescence and Phosphorescence, Jablonski diagram                               |   |  |  |
|   | ,,,,                                                                                  |   |  |  |

## Lab Objectives:

- 1. Provide the students with a basic understanding in Chemistry laboratory required to solve engineering problems.
- 2. Learn to design and carry out experiments as well as accurately record and analyze the results of such experiments.

## Lab Outcome:

The student will be able to

- 1. Analyse & generate experimental skills.
- 2. Enhance the thinking capabilities in the modern trends in Engineering & Technology.
- 3. Learn and apply basic techniques used in chemistry laboratories for preparation, purification and identification.
- 4. Learn safety rules in the practice of laboratory investigations.

## List of Experiments

- 1. Determination of Cell potential of Zn- Cu system
- 2. Molecular weight determination of polymers by Oswald Viscometer
- 3. Preparation of Urea Formaldehyde
- 4. Preparation of biodegradable polymer using corn starch or potato starch.
- 5. Preparation of Magnetic Nanoparticles.

- 6. Synthesis of Biodiesel
- 7. Determination of electrical conductivity of unknown solution.
- 8. Preparation of Hand Sanitizer using ethyl alcohol
- 9. Determination of Caffeine in Tea
- 10. Determination of pH using glass electrode.

#### **Internal Assessment: 30 marks**

Consisting of Two compulsory internal assessments 30 Marks each. The final marks will be the average score of both the tests.

#### End Semester Examination: 45 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorial and mini-projects (if included) are graded from time to time.

#### **Books/References:**

- 1. Engineering Chemistry P.C.Jain and Monika Jain, Dhanpat Rai Publications
- 2. A Textbook of Engineering Chemistry, Shashi Chawla(DhanpatRai publications)
- 3. A textbook of Engineering Chemistry S.S. Dara, S. Chand Publishing House
- 4. Engineering Chemistry O.G. Palanna, Tata Mc Graw Hill
- 5. Material Science and Engineering by W.D.Callister
- 6. Fundamentals of Molecular Spectroscopy C.N. Banwell, Tata Mc Graw Hill
- 7. Instrumental methods of chemical analysis B.K.Sharma, Goel Publishing House
- 8. "Nanomaterials: Synthesis, Properties and Applications", A. S. Edelstein and R. C. Cammarata- Institute of Physics Pub., 2001

| Course Code | Course Name                      | Credits |
|-------------|----------------------------------|---------|
| ET 110      | Engineering Drawing and Graphics | 1+2     |

## Course Objectives: The course is aimed

- 1. To develop graphic skills for communication of concepts, ideas and design of Engineering products.
- 2. To impart and inculcate proper understanding of the theory of projection.
- 3. To impart the knowledge of reading a drawing
- 4. To improve the visualization skill.

#### **Course Outcomes:**

On successful completion of course learner/student will be able to

- 1. Apply the basic principles of projections in Projection of Lines and Planes
- 2. Apply the basic principles of projections in Projection of Solids.
- 3. Apply the basic principles of sectional views in Section of solids and development of surfaces.
- 4. Apply the basic principles of projections in converting 3D view to 2D drawing.
- 5. Read a given drawing.
- 6. Visualize an object from the given two views.

| Module | Detailed Contents                                                                                                                                                                                                                                                       | Hrs. |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | <b>Introduction to Engineering Graphics</b><br>Principles of Engineering Graphics and their significance, usage of<br>Drawing instruments, Types of Lines, Dimensioning Systems as per IS<br>conventions. Introduction to plain and diagonal scales.                    | 2    |
|        | <b>Engineering Curves</b><br>Basic construction of Cycloid, Involutes and Helix (of cylinder) only.                                                                                                                                                                     | 3    |
| 2      | <b>Projection of Points and Lines</b><br>Lines inclined to both the Reference Planes (Excluding Traces of lines)<br>and simple application based problems on Projection of lines.                                                                                       | 3    |
| 2      | <b>Projection of Planes</b><br>Triangular, Square, Rectangular, Pentagonal, Hexagonal and Circular<br>planes inclined to either HP or VP only. (Exclude composite planes).                                                                                              | 2    |
| 3      | <b>Projection of Solids</b><br>(Prism, Pyramid, Cylinder, Cone only) Solid projection with the axis<br>inclined to HP and VP. (Exclude Spheres, Composite, Hollow solids and<br>frustum of solids). Use change of position or Auxiliary plane method                    | 5    |
| 4      | <b>Orthographic and Sectional Orthographic Projections:</b> - Fundamentals of orthographic projections. Different views of a simple machine part as per the first angle projection method recommended by I.S. Full or Half Sectional views of the Simple Machine parts. | 5    |
| 5      | <b>Isometric Views:</b> - Principles of Isometric projection – Isometric Scale,<br>Isometric Views, Conversion of Orthographic Views to Isometric<br>Views (Excluding Sphere ).                                                                                         | 4    |

#### Lab Objectives

- 1. To inculcate the skill of drawing with the basic concepts.
- 2. To Use AutoCAD for daily working process.
- 3. To teach basic utility of Computer Aided drafting (CAD) tool

## Lab Outcomes:

Learners will be able to ...

- 1. Apply the basic principles of projections in 2D drawings using a CAD software.
- 2. Create, Annotate, Edit and Plot drawings using basic AutoCAD commands and features.
- 3. Apply the concepts of layers to create drawing.
- 4. Apply basic AutoCAD skills to draw different views of a 3D object.
- 5. Apply basic AutoCAD skills to draw the isometric view from the given two views.

## Component-1

Self-study problems/ Assignment: (In A3 size Sketch book, to be submitted as part of Term Work)

- 1. Engineering Curves. (2 problems)
- 2. Projection of Lines (2 problems)
- 3. Projection of planes (2 problems)
- 4. Projection of solids. (2 problems)
- 5. Orthographic Projection. (With section 1 problem, without section 1 problem).
- 6. Isometric Drawing. (2 problems)

## **Component-2**

**Computer Graphics**: Engineering Graphics Software - Orthographic Projections, Isometric Projections, Co-ordinate Systems, Multi-view Projection.

| PART     | To be Taught in laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs.   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|          | <b>Overview of Computer Graphics Covering:</b><br>Listing the computer technologies that impact on graphical communication, demonstrating knowledge of the theory of CAD software such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects. | 3      |
| PART - A | <b>Customization &amp; CAD Drawing:</b><br>Consisting of set up of the drawing page and the printer including scale settings, Setting up of units and drawing limits, ISO and ANSI standards for coordinate dimensioning.                                                                                                                                                                                                                                                                                                  | 3      |
|          | Annotations, layering & other Functions Covering:<br>Applying dimensions to objects, applying annotations to drawings,<br>Setting up and use of layers, layers to create drawings, Create, edit and<br>use customized layers, Changing line lengths through modifying existing<br>lines (extend/lengthen), Printing documents to paper using the print<br>command, orthographic projection techniques, Drawing sectional views<br>of objects (simple machine parts).                                                       | 2      |
|          | Activities to be completed in the CAD Laboratory. (All printouts to<br>be the part of Term Work. Preferably, Use A3 size sheets for print<br>out.)                                                                                                                                                                                                                                                                                                                                                                         |        |
| PART -B  | 1. Orthographic Projections (without section)- 1 problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2      |
|          | 2. Orthographic Projection (with section)- 2 problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4      |
|          | <ul><li>3. Orthographic Reading – 1 problem</li><li>4. Isometric Drawing – 4 problem.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>4 |

#### **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

#### **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorial and mini-projects (if included) are graded from time to time.

Oral/Viva Assessment: The practical and oral examination will be based on entire syllabus.

#### **Text Books:**

- 1. N.D. Bhatt, "Engineering Drawing (Plane and solid geometry)", Charotar Publishing House Pvt. Ltd.
- 2. N.D. Bhatt & V.M. Panchal, "Machine Drawing", Charotar Publishing House Pvt. Ltd.

#### **Reference Books:**

- 1. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publisher.
- 2. Prof. Sham Tickoo (Purdue University) & Gaurav Verma, "(CAD Soft Technologies) : Auto CAD 2012 (For engineers and Designers)", Dreamtech Press NewDelhi.
- 3. Dhananjay A Jolhe, "Engineering Drawing" Tata McGraw Hill.

| Course Code | Course Name          | Credits |
|-------------|----------------------|---------|
| ET 111      | Python Programming I | 3+1     |

### **Course Objectives:**

- 1. Describe the core syntax and semantics of Python programming language.
- 2. Explore the various types of data structures.
- 3. To learn how to use indexing and slicing to access data in Python programs.
- 4. To learn how to use exception handling in Python applications for error handling.
- 5. To learn how to write functions and pass arguments in Python.
- 6. Develop applications using variety of libraries and functions

#### **Course Outcomes:**

- 1. Describe syntax and semantics in Python
- 2. Interpret the python syntax and semantics of control flow statements
- 3. Determine the methods to create and manipulate programs with Python data structures
- 4. Able to understand the exceptions and file handling methods.
- 5. Apply functions and modules in Python to solve a problem
- 6. Interpret object-oriented programming in Python

#### **Theory Syllabus:**

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO<br>Map<br>ping |
|------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1          | Basic                                                                             | Introduction to Python<br>1.1 Introduction to Python, Installation and resources,<br>Identifiers and Keywords, Comments, Indentation and<br>Multi-lining, Variables (Local and Global)<br>1.2 Arithmetic, Comparative, Logical and Identity<br>Operators, Bitwise Operators, Expressions, Print statement<br>and Formats                                                                                                                                                                                                                                                                                           | CO1               |
| 2          | Basic                                                                             | <ul> <li>Data structures &amp; Control Statement</li> <li>2.1 Strings, Lists, Tuples, Dictionaries, Sets, Accessing Elements, Properties, Operations and methods on these data structures.</li> <li>2.2 Decision Flow Control Statement: if and else statement, Nested If statement, Loop Statement: While Loop, do and while loop, for loop statement, Continue, Break and pass Statement, Conditional Statements</li> <li>2.3 Working with Strings</li> <li>String Indexes, string with a loop, String slices, Looping and counting, in operator, String comparison, Parsing strings, Format operator</li> </ul> | CO2               |

| - |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1           |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| 3 | File I/O Handling3.1 File Input/Output: Files I/O operations, Read / Write<br>Operations, File Opening Modes, with keywords, Moving<br>within a file, Manipulating files and directories, OS and<br>SYS modules.<br>3.2 MS Excel files: Introduction to MS Excel files |                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO2,<br>CO3 |  |  |
| 4 | Design                                                                                                                                                                                                                                                                 | <b>Exception, Testing and Debugging:</b><br>4.1 Handling if exceptions to handle the code cracks,<br>handling and helping file operations, coding with the<br>exceptional handling and testing Anonymous method,<br>Properties, Indexers, Exception Handling                                                                                                                                                                         |             |  |  |
| 5 | Design                                                                                                                                                                                                                                                                 | <b>Functions</b><br>5.1 Functions: Built-in-functions, library functions,<br>Defining and calling the functions, Return statements,<br>Passing the arguments, Lambda Functions, Recursive<br>functions, Modules and importing packages in python code.<br>5.2 Numeric and Date Functions: Dates and Times,<br>Advanced Data and Time Management, Random Numbers,<br>The Math Library, OS and SYS modules, The dir Function.          |             |  |  |
| 6 | Advanced                                                                                                                                                                                                                                                               | <ul> <li>Object Oriented Programming</li> <li>6.1 Classes and Objects, Public and Private Members,<br/>Class Declaration and Object Creation, Object Initialization,<br/>Class Variables and methods,<br/>Accessing Object and Class Attributes.</li> <li>6.2 Intricacies of Classes and Objects, Inheritance,<br/>Constructor in Inheritance, Data Abstraction, Data Hiding,<br/>Encapsulation, Modularity, Polymorphism</li> </ul> | CO6         |  |  |

# Lab Syllabus:

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4.Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                                                                  |
|------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Basic                                                                            | Write python programs to understand expressions, variables, quotes, basic math operations, list, tuples, dictionaries, arrays etc. |
| 2          | Basic                                                                            | Write Python program to implement byte array, range, set and different STRING Functions (len, count, lower, sorted etc)            |
| 3          | Basic                                                                            | Write a Python program to implement control structures.                                                                            |
|            | Basic                                                                            | Write python program to print list of numbers using range and for loop                                                             |
| 4          | Design                                                                           | Write python program to understand different File handling operations                                                              |
| 5          | Design                                                                           | Write python program in which an function is defined and calling<br>that function print Hello World                                |
| 6          | Advanced                                                                         | Write a program to find the factorial value of any number entered                                                                  |

|   |          | through the keyboard.                                                                                                                                                 |
|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | Advanced | Write a Python program to study, define, edit arrays and perform arithmetic operations.                                                                               |
| 8 | Advanced | Write a python program in which a function (with a single string parameter ) is defined and calling that function prints the string parameters given to the function. |
| 9 | Advanced | Write Python program to implement classes, object, Static method and inner class                                                                                      |

## Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

## End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorial and mini-projects (if included) are graded from time to time.

**Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

## **Text Books:**

- 1. Introduction to computing and problem solving using python, E Balagurusamy, McGraw Hill Education.
- 2. Core Python Programming, Dr. R. Nageswara Rao, Dreamtech Press
- 3. Beginning Python: Using Python 2.6 and Python 3.1. James Payne, Wrox publication
- 4. Zed A. Shaw, "Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code", Addison Wesley; 3 edition (1 October 2013).
- 5. Yashavant Kanetkar, "Let us Python: Python is Future, Embrace it fast", BPB Publications; 1 edition (8 July 2019).
- 6. Dusty Phillips, "Python 3 object-oriented Programming", Second Edition PACKT
- 7. Publisher August 2015.
- 8. John Grayson, "Python and Tkinter Programming", Manning Publications (1 March 1999)

## **References:**

- 1. Eric Matthes, "Python Crash Course A hands-on, Project Based Introduction to programming" No Starch Press; 1 edition (8 December 2015).
- 2. Paul Barry, "Head First Python" O'Reilly; 2 edition (16 December 2016)
- 3. Andreas C. Mueller, "Introduction to Machine Learning with Python", O'Reilly; 1 edition (7 October 2016)

- 4. David Beazley, Brian K. Jones, "Python Cookbook: Recipes for Mastering Python 3", O'Reilly Media; 3 edition (10 May 2013).
- 5. Bhaskar Chaudhary, "Tkinter GUI Application Development Blueprints: Master GUI programming in Tkinter as you design, implement, and deliver 10 real world application", Packt Publishing (November 30, 2015)

| Course Code | Course Name                             | Credits |
|-------------|-----------------------------------------|---------|
| ET 112      | Professional Communication and Ethics I | 2+1     |

## **Course Objectives**:

The course is aimed

- 1. To understand, compare and demonstrate the importance and relevance of communication with specific emphasis on listening skill.
- 2. To promote practice in speaking skill and encourage learners to compose on the spot speeches for the purpose of developing and generating ideas.
- 3. To train learners in reading strategies that will enhance their global understanding of the text and help them to comprehend academic and business correspondence.
- 4. To illustrate effective writing skills in business, academic and technical areas.
- 5. To inculcate confident personality traits with grooming and social etiquette.
- 6. To train learners in producing words on the basis of contextual cues and reflect on errors in sentences.

## **Course Outcomes:**

On successful completion of course learner/student will be able to

- 1. Listen, comprehend and identify potential barriers in spoken discourse with ease and accuracy.
- 2. Develop confidence and fluency in speaking at social, academic and business situations as well as make effective professional presentations.
- 3. Implement reading strategies for systematic, logical understanding, that will enhance the skill of comprehension, summarisation and evaluation of texts.
- 4. Understand and demonstrate effective writing skills in drafting academic, business and technical documents.
- 5. Communicate effectively in academic as well as business settings, displaying refined grooming and social skills.
- 6. Anticipate the meaning of unfamiliar words with the help of contextual cues and construct grammatically correct sentences.

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs. |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | The Importance and Strategies of Effective Listening<br>Prerequisite: Able to listen, read, speak, write and comprehend the<br>target languageIntroduction to communication1.1 Importance and relevance of communication1.2 Listening skill-ability to discriminate stress and intonation-Comprehend meaning of audio text-graded on the basis of<br>vocabulary, sentence construction and themepotential barriers |      |
| 2      | <ul> <li>Developing Speaking Skills</li> <li>2.1 Intensive Speaking- on the spot topics</li> <li>2.2 Responsive speaking-answering a question</li> <li>2.3 Interactive speaking-conversations</li> <li>2.4 Extensive speaking-speech, oral presentations-specific emphasis on plagiarism check and generating the report</li> </ul>                                                                                | 4    |

| 3 | Strategies and Techniques to build Reading Skill<br>3.1 Global understanding of the text- inference, anticipation and<br>deduction<br>3.2 Detailed understanding of text-scanning for specific information<br>(special emphasis on reading comprehension exercises and summarisation)                                                                                                                                                                                                                                                             | 2 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | <ul> <li>Developing Professional Writing Skills</li> <li>4.1 Effective introduction with emphasis on general statement, opposing statement and thesis statement</li> <li>4.2 Critical response to a text with special reference to purpose, evaluation of the content, theme and style of a text</li> <li>4.3 Organization of ideas, sentence construction and word choice, grammar and usage</li> <li>4.4 Explanation and support of ideas (special reference to writing paragraphs and business letters- Sales and complain letters)</li> </ul> | 4 |
| 5 | Etiquette and Grooming for Personality Development         5.1 Social Etiquette         5.2 Corporate etiquette         5.3 Confidence building and Personality development                                                                                                                                                                                                                                                                                                                                                                       | 1 |
| 6 | <ul><li>Vocabulary and Grammar</li><li>6.1 Contextual vocabulary Development- Word Maps</li><li>6.2 Identifying errors in a sentence.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |

## Lab Prerequisite: Basic language skills

## Lab Objectives:

- L1. To train learners in listening strategies that will enhance their global understanding of the audio text and help them to comprehend potential barriers in listening.
- L.2. To aid learners to speak English accurately, effectively and confidently.
- L.3. To train learners in reading strategies that will enhance their global understanding of the text and help them to comprehend academic and business correspondence.
- L.4. To illustrate effective writing skills in business, academic and technical areas.
- L.5. Grooming and projecting appropriate behaviour in all interactions.
- L.6. To understand the importance of vocabulary development in using and producing words with the help of word maps, images and contextual clues.

## Lab Outcomes:

- LO1: Able to listen and comprehend in audio texts with ease and accuracy as well as resolve potential barriers.
- LO2: Learners will be able to take part in the on the spot speech competition, respond to a question with accuracy and demonstrate appropriate non-verbal signals required in interactive speaking, oral and speech presentations.
- LO3: Implement reading strategies for systematic, logical understanding that will enhance the skill of comprehension, summarization and evaluation of texts.
- LO4: Understand and demonstrate effective writing skills in drafting academic, business and technical documents.
- LO5: Dress and conduct themselves appropriately as required in a given situation.
- LO6: Anticipate the meaning of unfamiliar words with the help of contextual cues and assess their vocabulary building skills.

#### **Detailed Syllabus:**

|            | icu Bynabus.                                                                      |                                                                                                                                                                                    |            |
|------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                                                                                                                  | LO Mapping |
| 1          | Assignment 1                                                                      | Written record of listening activities - Listening<br>practice tasks of 3 types (through audio recordings of<br>(1) Monologues (2) Dialogues (3) Formal/Expert<br>Talk or Lecture) | LO1        |
| 2          | Assignment 2                                                                      | Transcription of the public speech along with a plagiarism report-Practice public speech                                                                                           | LO2        |
| 3          | Assignment 3                                                                      | Summarization through graphic organisers (1. Text to graphic organizer 2. Graphic organizer to text)                                                                               | LO3        |
| 4          | Assignment 4                                                                      | <ol> <li>Case studies on critical thinking</li> <li>2 business letters in complete block format</li> </ol>                                                                         | LO4        |
| 5          | Assignment 5                                                                      | Documentation of case studies/Role play based on Module 5                                                                                                                          | LO5        |
| 6          | Assignment 6                                                                      | <ol> <li>Contextual Vocabulary Development</li> <li>Aptitude Test</li> </ol>                                                                                                       | LO6        |

#### **Theory Assessment:**

#### Internal Assessment: 20 marks

Consisting of Two compulsory internal assessments 20 Marks each. The final marks will be average of score of both the tests.

### End Semester Examination: 30 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Oral/Viva Assessment:** The practical and oral examination will be based on entire syllabus.

#### **Books/References:**

- 1. Raman Meenakshi & Sharma Sangeeta, Communication Skills, Oxford University Press
- 2. Kumar Sanjay & Lata Pushp, Communication Skills, Oxford University Press
- 3. Locker, Kitty O. Kaczmarek, Stephen Kyo. (2019). Business Communication: Building Critical Skills. Place of publication not identified: Mcgraw-hill.
- 4. Murphy, H. (1999). Effective Business Communication. Place of publication not identified: Mcgraw-Hill.
- 5. Lewis, N. (2014). Word power made easy. Random House USA.

| Course Code | Course Name                   | Credits |
|-------------|-------------------------------|---------|
| ET 113      | Basic Engineering Workshop II | 1.5     |

## **Course Objectives:**

- 1. To impart training to help the students develop engineering skill sets.
- 2. To inculcate respect for physical work and hard labor.
- 3. To get exposure to interdisciplinary engineering domain.

## **Course Outcomes:**

Learner will be able to...

- 1. Develop the necessary skill required to handle/use different carpentry tools.
- 2. Identify and understand the safe practices to adopt in electrical environment.
- 3. Demonstrate the wiring practices for the connection of simple electrical load/ equipment.
- 4. Design, fabricate and assemble pcb.
- 5. Develop the necessary skill required to handle/use different masons tools.
- 6. Develop the necessary skill required to use different sheet metal and brazing tools.
- 7. Able to demonstrate the operation, forging with the help of a simple job.

| Trade      | Detailed Content                                                                                |    |  |  |
|------------|-------------------------------------------------------------------------------------------------|----|--|--|
| Note:      |                                                                                                 |    |  |  |
| Trade 1 a  | nd 2 are compulsory. Select any ONE trade topics out of the topic trade 3 to                    | 5. |  |  |
| Demonstra  | Demonstrations and hands on experience to be provided during the periods allotted for the same. |    |  |  |
| Report on  | Report on the demonstration including suitable sketches is also to be included in the term work |    |  |  |
| CO-1 is re | lated to Trade-1                                                                                |    |  |  |
| CO-2 to C  | O-4 is related to Trade-2                                                                       |    |  |  |
| CO-5 is re | lated to Trade-3                                                                                |    |  |  |
| CO-6 is re | elated to Trade-4                                                                               |    |  |  |
| CO-7 is re | lated to Trade-5                                                                                |    |  |  |
| CO evalua  | tion is to be done according to the opted Trades in addition to Compulsory Trades               | •  |  |  |
| Trade-1    | Carpentry(Compulsory)                                                                           |    |  |  |
|            | 6. Use and setting of hand tools like hacksaws, jack planes, chisels and                        |    |  |  |
|            | gauges for construction of various joints, wood tuning and modern wood                          | 10 |  |  |
|            | turning methods.                                                                                |    |  |  |
|            | 7. Term work to include one carpentry job involving a joint and report on                       |    |  |  |
|            | demonstration of a job involving wood turning                                                   |    |  |  |
| Trade-2    | Basic Electrical work shop:(Compulsory):                                                        |    |  |  |
|            | 8. Single phase and three phase wiring. Familiarization. of protection                          |    |  |  |
|            | switchgears and their ratings (fuse, MCB, ELCB). Wiring standards, Electrical                   | 08 |  |  |
|            | safety in the work place safe work practices. Protective equipment, measures                    |    |  |  |
|            | and tools.                                                                                      |    |  |  |
|            | 9. Layout drawing, layout transfer to PCB, etching and drilling and                             |    |  |  |
|            | soldering technique                                                                             |    |  |  |
| Trade-3    | Masonry:                                                                                        |    |  |  |
|            | 10. Use of masons tools like trowels, hammer, spirit level, square, plumb line                  | 06 |  |  |
|            | and pins etc. demonstration of mortar making, single and one and half brick                     |    |  |  |
|            | masonry, English and Flemish bonds, block masonry, pointing and plastering.                     |    |  |  |
|            |                                                                                                 |    |  |  |
|            |                                                                                                 |    |  |  |

| Trade 4 | <b>Sheet metal working and Brazing:</b> 11.Use of sheet metal, working hand tools, cutting, bending, spot welding                              | 06 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Trade-5 | <b>Forging (Smithy):</b><br>12.At least one forging job to be demonstrated and a simple job to be made for Term Work in a group of 4 students. | 06 |

### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four structure term work assessment must be based on the overall performance of the sudent with every experiment/tutorial and mini-projects (if included) are graded from time to dime

| Course Code | Course Name                        | Credits |
|-------------|------------------------------------|---------|
| ET 201      | <b>Engineering Mathematics III</b> | 3+1     |

## **Prerequisite:**

Engineering Mathematics-I and Engineering Mathematics-2

#### **Course Objectives:**

- 1. To Learn the Laplace Transform, Inverse Laplace Transform of various functions, its applications.
- 2. To understand the concept of Fourier series, its complex form and enhance the problem-skills.
- 3. To Understand Matrix algebra for engineering problems
- 4. To understand the concept of complex variables, C-R equations with applications.
- 5. To understand the concepts of Quadratic forms and Singular value decomposition.
- 6. To Learn Fourier Integral, Fourier Transform and Inverse Fourier transform.

## **Course Outcomes:**

The learner will be able to

- 1. Understand the concept of Laplace transform and its application to solve the real integrals, understand the concept of inverse Laplace transform of various functions and its applications in engineering problems.
- 2. Expand the periodic function by using the Fourier series for real-life problems and complex engineering problems.
- 3. Apply the concepts of eigenvalues and eigenvectors in engineering problems.
- 4. Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic functions.
- 5. Use the concept of Quadratic forms and Singular value decomposition which are very useful tools in various Engineering applications
- 6. Apply the concept of Fourier transform and its inverse in engineering problems.

| Sr.<br>No. | Module               | Detailed Content                                                                                                                                                                                                                                                                                                                       | Hours | CO<br>Mapping |
|------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| I          | Laplace<br>Transform | Definition of Laplace transform and Laplace<br>transform of standard functions, Properties of<br>Laplace Transform: Linearity, First Shifting<br>Theorem, change of scale Property,<br>multiplication by t, Division by t, (Properties<br>without proof). Inverse of Laplace Transform by<br>partial fraction and convolution theorem. | 7     | 1             |
| Ш          | Fourier Series,      | Dirichlet's conditions, Fourier series of periodic functions with period $2\pi$ and 2L, Fourier series for even and odd functions, Half range sine and cosine Fourier series, Orthogonal and Orthonormal functions, Complex form of Fourier series.                                                                                    | 7     | 2             |

| III | Linear Algebra<br>Matrix Theory,                  | Eigenvalues and eigenvectors;<br>Diagonalization of matrices; Cayley-Hamilton<br>Theorem, Functions of square matrix.                                                                                                                                                                                                                                                                                                                                                      | 6 | 3 |
|-----|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| IV  | Complex<br>Variables and<br>conformal<br>mappings | Function $f(z)$ of complex variable, Introduction<br>to Limit, Continuity and Differentiability of (z),<br>Analytic function: Necessary and sufficient<br>conditions for $f(z)$ to be analytic, Cauchy-<br>Riemann equations in Cartesian coordinates,<br>Milne-Thomson method: Determine analytic<br>function $f(z)$ when real part(u), imaginary part<br>(v) or its combination (u+v / u-v) is given,<br>Conformal mapping, Linear and Bilinear<br>mappings, cross ratio | 7 | 4 |
| v   | Quadratic<br>Forms                                | Quadratic forms over real field, Linear<br>Transformation of Quadratic form,<br>Reduction of Quadratic form to diagonal form<br>using congruent transformation.<br>Rank, Index and Signature of quadratic form,<br>Sylvester's law of inertia, Value-<br>class of a quadratic form-Definite,<br>Semidefinite and Indefinite.<br>Reduction of Quadratic form to a canonical<br>form using congruent transformations.<br>Singular Value Decomposition.                       | 6 | 5 |
| VI  | Fourier<br>Transform                              | Fourier Integral Representation, Fourier<br>Transform and Inverse Fourier transform of<br>constant and exponential function.                                                                                                                                                                                                                                                                                                                                               | 6 | 6 |

## Lab Prerequisite:

Applied Mathematics -I, Applied Mathematics -II, Scilab programming SEM I and SEM II.

# Software Requirements:Sci Lab

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                         | Hours |
|------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------|
| 1          | Basic                                                                             | Write a program in scilab to find Laplace transform of a function and show graphically.   | 2     |
| 2          | Basic                                                                             | Write a program in scilab to find fourier series of a function and show graphically.      | 2     |
| 3          | Basic                                                                             | Write a program in scilab to find eigenvalues of a matrix                                 | 2     |
| 4          | Advanced                                                                          | Write a program in scilab to find eigenvalues and eigenvectors                            | 2     |
| 5          | Design                                                                            | Write a program in scilab to find the exponential or trigonometric functions of a matrix. | 2     |

| 6  | Advanced | Write a program in scilab to find a quadratic form                         | 2 |  |
|----|----------|----------------------------------------------------------------------------|---|--|
| 7  | Advanced | Write a program in scilab to apply the congruent transformations on matrix | 2 |  |
| 8  | Advanced | Write a program in scilab to find SVD of a matrix                          | 2 |  |
| 9  | Basic    | Write a program in scilab to find fourier transform                        | 2 |  |
| 10 | Basic    | Write a program in scilab to find determinant of a matrix                  | 2 |  |
| 11 | Basic    | Write a program in scilab to find the value of a complex integral.         | 2 |  |

## **Internal Assessment:40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

## End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**1. Term work Assessment:** At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise. Computation/simulation-based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

2. **Oral/Viva Assessment:** The practical and oral examination will be based on entire syllabus.

#### **Text Books and References:**

- 1. Higher Engineering Mathematics B. V. Ramana, Tata Mc-Graw Hill Publication
- 2. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 3. Advanced engineering mathematics H.K. Das, S. Chand, Publications.
- 4. Advanced Engineering Mathematics Wylie and Barret, Tata Mc-Graw Hill.
- 5. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 6. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication
- Scilab spoken tutorials videos. (https://spoken-tutorial.org/tutorial-search/?search\_foss=Scilab&search\_language=English)

| Subject Code | Subject Name              | Total |
|--------------|---------------------------|-------|
| ET 202       | <b>Electronic Devices</b> | 04    |

### **Prerequisite:**

**Basic Electrical Engineering** 

## **Course Objectives:**

- 1. To explain functionality of different electronic devices.
- 2. To perform DC and AC analysis of small signal amplifier circuits.
- 3. To analyze frequency response of small signal amplifiers
- 4. To compare small signal and large signal amplifiers.
- 5. To explain working of differential amplifiers and its applications in Operational Amplifiers

## Course Outcomes: The learner will be able to

- 1. Analyze the functionality and applications of various electronic devices with the help of V-I characteristics.
- 2. Derive expressions for performance parameters of BJT and MOSFET based electronic circuits.
- 3. Evaluate frequency response to understand behavior of BJT and MOSFET based Electronics circuits.
- 4. Understand working of different power amplifier circuits, their design and use in electronics and communication circuits.
- 5. Understand working of E-MOSFET differential amplifiers and E-MOSFET current sources.
- 6. Select and Design electronic circuits for given specifications.

| Sr.<br>No. | Module                                        | Detailed Content                                                                                                                                                                                                                                                                                                                                                       | Hours | CO<br>Mapping |
|------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| I          | Introduction<br>of<br>Electronic<br>Devices   | Study of pn junction diode characteristics & diode<br>current equation. Application of zener diode as a<br>voltage regulator.<br>Construction, working and characteristics of BJT,<br>D-MOSFET, and E-MOSFET                                                                                                                                                           | 5     | CO1           |
| п          | Biasing<br>Circuits of<br>BJTs and<br>MOSFETs | Concept of DC load line, Q point and regions of<br>operations, Analysis and design of biasing circuits<br>for BJT (Fixed bias & Voltage divider Bias)<br>DC load line and region of operation for<br>MOSFETs. Analysis and design of biasing circuits<br>for DMOSFET (self-bias and voltage divider bias),<br>E-MOSFET (Drain to Gate bias & voltage divider<br>bias). | 6     | CO2           |

| ш  | Small Signal<br>Amplifiers                             | Concept of AC load line and Amplification, Small<br>signal analysis (Zi, Zo, Av and Ai) of CE<br>amplifiers using hybrid pi model ONLY.<br>Small signal analysis (Zi, Zo, Av) of CS (for<br>EMOSFET) amplifiers.<br>Introduction to multistage amplifiers.(Concept,<br>advantages & disadvantages)                            | 7 | CO2,<br>CO6 |
|----|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|
| IV | Frequency<br>response of<br>Small signal<br>Amplifiers | Effects of coupling, bypass capacitors and parasitic<br>capacitors on frequency response of single stage<br>amplifier, Miller effect and Miller capacitance.<br>High and low frequency analysis of BJT CE<br>amplifier. High and low frequency analysis of<br>CS (E-MOSFET) amplifier.                                        | 7 | CO3,CO6     |
| v  | Large<br>Signal<br>Amplifiers                          | Difference between small signal & large signal<br>amplifiers.<br>Classification and working of Power amplifier.<br>Analysis of Class A power amplifier (Series fed<br>and transformer coupled).<br>Transformer less Amplifier: Class B power<br>amplifier. Class AB power amplifier.<br>Thermal considerations and heat sinks | 7 | CO4         |
| VI | Introduction<br>to<br>Differential<br>Amplifiers       | E-MOSFET Differential Amplifier, DC transfer<br>characteristics operation with common mode<br>signal and differential mode signal<br>Differential and common mode gain, CMRR,<br>differential and common mode<br>Input impedance. Two transistor (E-MOSFET)<br>constant current source                                        | 7 | CO5         |

## Lab Prerequisite:

Basic Electrical and Electronics Laboratory

## Software Requirements:

LTSpice

#### Hardware Requirements:

Breadboard, Transistors, Resistors, Diodes, Connecting wires

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description             | Hours |
|------------|-----------------------------------------------------------------------------------|-----------------------------------------------|-------|
| 1          | Basic                                                                             | Study of pn junction diode characteristics.   | 2     |
| 2          | Basic                                                                             | To study zener as a voltage regulator.        | 2     |
| 3          | Design                                                                            | To study characteristics of CE configuration. | 2     |
|            |                                                                                   |                                               |       |
| 4          | Design                                                                            | To study BJT biasing circuits.                | 2     |

| 5  | Advanced | To study BJT as a CE amplifier.                                    | 2 |
|----|----------|--------------------------------------------------------------------|---|
| 6  | Advanced | To study frequency response of a CE amplifier.                     | 2 |
| 7  | Design   | To study EMOSFET biasing circuits.                                 |   |
| 8  | Design   | Simulation experiment on study frequency response of CS amplifier. | 2 |
| 9  | Advanced | Simulation experiment on study of differential amplifier.          | 2 |
| 10 | Advanced | Simulation experiment on multistage amplifier.                     | 2 |
| 11 | Advanced | To study frequency response of multistage amplifier                | 2 |

## **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

## **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## Lab Assessments:

**1. Term work Assessment:** At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

2. Oral/Viva Assessment: The practical and oral examination will be based on entire syllabus.

## **Text Books:**

- 1. D. A. Neamen, "Electronic Circuit Analysis and Design," Tata McGraw Hill, 2ndEdition.
- 2. A. S. Sedra, K. C. Smith, and A. N. Chandorkar, "Microelectronic Circuits Theory and Applications," International Version, OXFORD International Students, 6thEdition
- 3. Franco, Sergio. Design with operational amplifiers and analog integrated circuits. Vol. 1988. New York: McGraw-Hill, 2002.

#### **References:**

- 1. Boylestad and Nashelesky, "Electronic Devices and Circuits Theory," Pearson Education, 11th Edition.
- 2. A. K. Maini, "Electronic Devices and Circuits," Wiley.
- 3. T. L. Floyd, "Electronic Devices," Prentice Hall, 9th Edition, 2012.
- 4. S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits", Tata Mc-Graw Hill, 3rd Edition
- 5. Bell, David A. Electronic devices and circuits. Prentice-Hall of India, 1999.

| Subject Code | Subject Name   | Total |
|--------------|----------------|-------|
| ET 203       | Network Theory | 03    |

#### **Prerequisite:**

- 1. Basic Electrical Engineering
- 2. Engineering Mathematics

## **Course Objectives:**

- 1. To evaluate the Circuits using network theorems.
- 2. To analyze the Circuits in time and frequency domain.
- 3. To study network Topology, network Functions and two port networks.
- 4. To synthesize passive network by various methods.

## Course Outcomes: The learner will be able to

- 1. Apply their knowledge in analysing Circuits by using network theorems.
- 2. Apply the knowledge of graph theory for analysing the circuits.
- 3. Find transient and steady state response of a circuit using time and frequency domain analysis methods.
- 4. Find the network functions,
- 5. Understand the concept of Two port networks and distinguish between various two port network parameters.
- 6. Synthesize the network using passive elements.

| Sr.<br>No. | Module                                      | Detailed Content                                                                                                                                                                                                                                                                                                                                                         | Hours | CO<br>Mapping |
|------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| I          | Electrical<br>circuit<br>analysis           | Circuit Analysis: Analysis of Circuits with and<br>without dependent sources using generalized loop<br>and node analysis, super mesh and super node<br>analysis technique. Circuit Theorems:<br>Superposition, Thevenin's, Norton's and<br>Maximum Power Transfer Theorems (Use only<br>DC source).                                                                      | 08    | CO1           |
| Ш          | Graph<br>Theory                             | Objectives of graph theory, Linear Oriented<br>Graphs, graph terminologies Matrix<br>representation of a graph: Incidence matrix,<br>Circuit matrix, Cut-set matrix, reduced Incident<br>matrix, Tieset matrix, f-cutset<br>matrix. Relationship between sub matrices A, B &<br>Q. KVL & KCL using matrix.                                                               | 05    | CO2           |
| ш          | Time and<br>frequency<br>domain<br>analysis | Time domain analysis of R-L and R-C Circuits:<br>Forced and natural response, initial and final<br>values. Solution using first order and second order<br>differential equation with step signals. Frequency<br>domain analysis of R-L-C Circuits: Forced and<br>natural response, effect of damping factor.<br>Solution using second order equation for step<br>signal. | 07    | CO3           |

| IV | Network<br>functions            | Network functions for the one port and two port<br>networks, driving point and transfer functions,<br>Poles and Zeros of Network functions, necessary<br>condition for driving point functions, necessary<br>condition for transfer functions, testing for<br>Hurwitz polynomial. Analysis of ladder network<br>(Up to two nodes or loops) | 06 | CO4 |
|----|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| v  | Two port<br>Networks            | Parameters: Open Circuits, short Circuit,<br>Transmission and Hybrid parameters, relationship<br>among parameters, conditions for reciprocity and<br>symmetry. Interconnections of Two-Port<br>networks T & $\pi$ representation.                                                                                                          | 06 | CO5 |
| VI | Synthesis of<br>RLC<br>circuits | Positive Real Functions: Concept of positive real<br>function, necessary and sufficient conditions for<br>Positive real Functions. Synthesis of LC, RC<br>Circuits: properties of LC, RC driving point<br>functions, LC, RC network Synthesis in Cauer-I<br>&Cauer-II, Foster-I & Foster-II forms (Up to Two<br>Loops only).               | 07 | CO6 |

#### **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

#### End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### **Text Books:**

- 1. Franklin F Kuo, "Network Analysis and Synthesis", Wiley Toppan, 2nd ed. 1966.
- 2. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi, 26th Indian Reprint, 2000.

#### **References:**

- 1. A. Chakrabarti, "Circuit Theory", Dhanpat Rai & Co., Delhi, 6th Edition.
- 2. A. Sudhakar, Shyammohan S. Palli "Circuits and Networks", Tata McGraw-Hill education
- 3. Smarajit Ghosh "Network Theory Analysis & Synthesis", PHI learning.
- 4. K.S. Suresh Kumar, "Electric Circuit Analysis" Pearson, 2013.
- 5. D. Roy Choudhury, "Networks and Systems", New Age International, 1998.

| Subject Code | Subject Name                   | Total |
|--------------|--------------------------------|-------|
| ET 204       | Instruments and Control System | 03    |

### **Prerequisite:**

**Basic Electrical Engineering** 

#### **Course Objectives:**

- 1. To provide basic knowledge about generalized measurement system and its performance characteristics.
- 2. To provide basic knowledge about various sensors and transducers.
- 3. To provide fundamental concepts of control system such as mathematical modeling, block diagram and signal flow graph.
- 4. To employ time domain analysis to predict and diagnose transient performance parameters of the system for standard input functions and develop concepts of stability and its assessment criteria in time domain analysis.
- 5. Formulate different types of analysis in frequency domain to explain the nature of stability of the system.
- 6. Develop and analyze state space models.

## **Course Outcomes:** The learner will be able to:

- 1. Distinguish between various types of measurement systems and their performance characteristics.
- 2. Apply the knowledge of various transducers for measurement of temperature, displacement and pressure.
- 3. Determine the transfer function of the system using block diagram reduction and signal flow graph technique.
- 4. Analyze systems using time domain analysis techniques.
- 5. Apply concepts of frequency domain techniques in stability analysis of control systems.
- 6. Derive the state variable models of systems and analyze their controllability and observability.

| Sr.<br>No. | Module                                                                   | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                     | Hours | CO<br>Mapping |
|------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Principle of<br>Measurement<br>, Testing and<br>Measuring<br>instruments | Introduction to basic instruments: components<br>of generalized measurement system, concept of<br>accuracy, precision, linearity, sensitivity,<br>resolution, hysteresis, calibration.<br>Measurement of Resistance: Kelvin's double<br>bridge, Wheatstone bridge and Megohm<br>bridge, Measurement of Inductance: Maxwell<br>bridge and Hay bridge, Measurement of<br>Capacitance: Schering bridge. | 5     | CO1           |

| Ш  | Sensors and<br>Transducers                       | Basics of sensors and transducers-Active and<br>passive transducers, characteristics and<br>selection criteria of transducers.<br>Displacement and pressure- potentiometers,<br>pressure gauges, linear variable differential<br>transformers (LVDT) and strain gauges.<br>Temperature transducers-working principle,<br>ranges and applications of resistance<br>temperature detectors (RTD), thermistors and<br>thermocouples. | 6 | CO2 |
|----|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| ш  | Introduction<br>to Control<br>System<br>Analysis | Introduction: open and closed loop systems,<br>example of control systems.<br>Transfer function model of Electrical system,<br>Block diagram reduction techniques and Signal<br>flow graph.                                                                                                                                                                                                                                      | 7 | CO3 |
| IV | Time<br>Response<br>Analysis                     | Standard test signals, transient and steady state<br>behavior of first and second order systems,<br>steady state errors in feedback control systems<br>and their types.<br>Concept of stability: Routh and Hurwitz<br>stability criterion, Root locus Analysis: Root<br>locus concept, general rules for constructing<br>root-locus, and root locus analysis of control<br>system.                                               | 8 | CO4 |
| v  | Frequency<br>Response<br>Analysis                | Introduction:Frequencydomainspecifications, relationship between time andfrequency domain specifications of system.Bode Plot:Magnitude and phase plot, methodof plotting Bode plot, stability margins andanalysis using bode plot.Nyquist Criterion:Concept of Polar plot andNyquist plot,Nyquist stability criterion.                                                                                                           | 7 | CO5 |
| VI | State Space<br>Analysis                          | State space representation of the system, state<br>space equations, state space representation<br>from transfer function, state space<br>representation of electrical network, transfer<br>matrix, eigen values and eigen vector, solution<br>of state equations, controllability and<br>observability.                                                                                                                          | 6 | CO6 |

#### Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

## End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## **Text Books:**

- 1. A.K. Sawhney, "Electrical & Electronic Measurement & Instrumentation" DRS . India
- 2. M.M.S. Anand, "Electronic Instruments and instrumentation Technology".
- 3. H.S.Kalsi, "Electronic Instrumentation"-TMH, 2nd Edition.
- 4. Nagrath, M.Gopal, "Control System Engineering", Tata McGraw Hill.
- 5. K.Ogata, "Modern Control Engineering, Pearson Education", IIIrdedition.

### **References:**

- 1. Helfrick & Copper, "Modern Electronic Instrumentation & Measuring Techniques" PHI
- 2. W.D. Cooper, "Electronic Instrumentation And Measuring Techniques" PHI
- 3. Benjamin C.Kuo, "Automatic Control Systems, Eearson education" VIIth edition
- 4. Rangan C. S., Sarma G. R. and Mani V. S. V., "Instrument 10n evices And Systems", Tata McGraw-Hill, 2nd Ed., 2004.
- 5. Bell David A."Electronic Instrumentation and Measurer nts", PHI P arson Education, 2006.
- 6. Madan Gopal, "Control Systems Principles and Design Tata AcGraw hill, 7th edition,1997.
- 7. Normon, "Control System Engineering", John Wiley & sons 3rd ......

| Subject Code | Subject Name        | Total |
|--------------|---------------------|-------|
| ET 205       | Signals and Systems | 03    |

## **Prerequisite:**

Engineering Mathematics III

#### **Course Objectives:**

- 1. To identify, classify and analyze various types of signals and systems
- 2. To analyze time Domain analysis of continuous and discrete time signals and systems.
- 3. To analyze the continuous and discrete time signals and systems in frequency domain using Fourier Transform.
- 4. To analyze, formulate and solve problems on frequency domain analysis of continuous time systems using Laplace Transform.
- 5. To analyze, formulate and solve problems on frequency domain analysis of discrete time systems using Z- Transform.
- 6. To provide foundation of signal and system concepts to areas like communication, control and comprehend applications of signal processing in communication systems.

## **Course Outcomes:**

- 1. Classify and analyze various types of signals and systems.
- 2. Determine convolution integral and convolution sum.
- 3. Analyze the continuous and discrete time signals and systems in frequency domain using Fourier Transform.
- 4. Analyze, formulate and solve problems on frequency domain analysis of continuous time systems using Laplace Transform.
- 5. Analyze, formulate and solve problems on frequency domain analysis of discrete time systems using Z- Transform.
- 6. Understand the concept of FIR and IIR system

| Sr.<br>No. | Module                                                                          | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hours | CO<br>Mapping |
|------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| 1          | Introduction<br>of<br>Continuous<br>and Discrete<br>Time Signals<br>and systems | Introduction to Signals: Definition of Signals ,<br>Representation of continuous time signals and<br>discrete time signals, Sampling theorem(only<br>statement derivation not expected), sampling of<br>continuous time signals<br>Basic Elementary signals , Arithmetic operations on<br>the signals- Time Shifting, Time scaling, Time<br>Reversal of signals<br>Classification of Continuous time signals and<br>Discrete time signal<br>Introduction to Systems: Definition of Systems ,<br>Classification of Continuous time systems and<br>Discrete time systems | 7     | CO 1          |

| 2 | Time<br>domain<br>analysis of<br>continuous<br>time and<br>discrete time<br>systems              | Linear Time Invariant (LTI) systems, Convolution<br>integral and Convolution sum for analysis of LTI<br>systems<br>Correlation of Signals: Auto-correlation and Cross<br>correlation of Continuous time signals and Discrete<br>time signal                                                                                                                                                                                                                                                                           | 7 | CO 2 |
|---|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
| 3 | Fourier<br>Analysis of<br>Continuous<br>and Discrete<br>Time Signals<br>and Systems              | Fourier transform of periodic and non-periodic<br>functions, Properties of Fourier Transform, Inverse<br>Fourier Transform, Frequency Response:<br>computation of Magnitude and Phase Response,<br>Energy spectral density, Power spectral density(No<br>Numericals expected),Limitations of Fourier<br>Transform                                                                                                                                                                                                     | б | CO 3 |
| 4 | Frequency<br>domain<br>analysis of<br>continuous<br>time system<br>using<br>Laplace<br>transform | Definition of Laplace Transform (LT), Region of<br>Convergence (ROC), Properties of Laplace<br>transform, Inverse Laplace transform.<br>Analysis of continuous time LTI systems using<br>Laplace Transform: Causality and stability of<br>systems in s-domain, Total Response of the system,<br>Relation between LT and FT                                                                                                                                                                                            | 7 | CO 4 |
| 5 | Frequency<br>domain<br>analysis of<br>discrete time<br>system using<br>Z- transform              | Definition of unilateral and bilateral Z Transform,<br>Region of Convergence (ROC),Properties of Z-<br>Transform, Inverse Z-Transform (Partial fraction<br>method only)<br>Analysis and characterization of the LTI system<br>using Z transform: Transfer Function and difference<br>equation, plotting Poles and Zeros of a transfer<br>function, causality, stability, Total response of a<br>system. Relation between Laplace Transform and Z–<br>Transform, Relation between Fourier Transform and<br>Z–Transform | 8 | CO 5 |
| 6 | FIR and IIR<br>systems                                                                           | <b>IR</b> Concept of finite impulse response systems and infinite impulse response systems, Linear Phase FIR systems Realization structures of LTI Discrete time                                                                                                                                                                                                                                                                                                                                                      |   | CO6  |

#### **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

## End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## **Text Books:**

- 1. NagoorKani, "Signals and Systems", Tata McGraw Hill, Third Edition, 2011
- 2. Tarun Kumar Rawat, "Signals and Systems", Oxford UniversityPress 2016.
- 3. Simon Haykin and Barry Van Veen, "Signals and Systems", John Wiley and Sons, Second Edition, 2004.

#### **References:**

- 1. Hwei. P Hsu, "Signals and Systems", Tata McGraw Hill, Third edition, 2010
- 2. Rodger E Ziemer, William H. Tranter and D. Ronald Fannin, "Signals and Systems", Pearson Education, Fourth Edition 2009.
- 3. Alan V. Oppenhiem, Alan S. Willsky and S. Hamid Nawab, "Signals and Systems", Prentice-Hall of India, Second Edition, 2002.

| Subject Code | Subject Name          | Total (Credits) |
|--------------|-----------------------|-----------------|
| ET 206       | Python Programming II | 01              |

Lab Prerequisite: Python Programming I

## Lab Objectives:

L1.Describe the core syntax and semantics of Python programming language.

- L2. Infer the Object-oriented Programming concepts in Python
- L3. Using database operations in python like mysql.
- L4. Formulate GUI Programming and Image processing in Python
- L5. To introduce advanced python libraries like Numpy, Pandas, Matplotlib, Seaborn, Scipy.
- L6.Develop applications using a variety of libraries and functions

Lab Outcomes: The learner will be able to

- LO1: Describe syntax and semantics in Python
- LO2: Infer the Object-oriented Programming concepts in Python
- LO3: Using database operations in python like mysql.
- LO4: Design GUI Applications in Python
- LO5: Express proficiency in handling Python libraries for data science
- LO6: Develop applications using Python

**Software Requirements:** Python IDE, Anaconda Environment, mysql workbench, Google Colab to run python scripts

| Sr.<br>No | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4.Project/<br>Case Study/<br>Seminar | Detailed Lab/Tutorial Description                                                                                                                                                                                                                                                                                                                                                  | LO<br>Mapping |
|-----------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1         | Basic                                                                                 | <ul> <li>1. Python Fundamentals</li> <li>1.1 Basics of Control Statements, Functions, Classes,<br/>Objects and Exceptions</li> <li>1.2 Python Regular Expressions</li> <li>What are regular expressions? The match Function The<br/>search Function Matching vs searching Search and Replace</li> <li>Extended Regular Expressions Wildcard</li> <li>1.3 File handlings</li> </ul> | LO1           |
| 2         | Design                                                                                | <ul> <li>2. OOPS and Exception handling</li> <li>2.1 Creating classes, Inheritance, polymorphism, Encapsulation, Abstraction</li> <li>2.2 difference between exceptions and error, exception handling with try and except, Custom exception handling, Best practice exception handling</li> </ul>                                                                                  | LO2           |

## Hardware Requirements: NA

| 3 | Design   | <ul> <li>3. Using Databases in Python</li> <li>3.1 Python MySQL Database Access Install the MySQLdb and other Packages</li> <li>3.2 Create Database Connection CREATE, INSERT, READ Operation DML and DDL Operation with Databases</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       | LO3 |
|---|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4 | Advanced | <ul> <li>4. Graphical User Interface And Image Processing</li> <li>4.1 Graphical User Interface using Tkinter Library module,<br/>Creating simple GUI; Buttons, Labels, entry fields, widget<br/>attributes.</li> <li>4.2 Database: Sqilite database connection, Create, Append,<br/>update, delete records from database using GUI.</li> <li>4.3 Basic Image Processing using OpenCV library, simple<br/>image manipulation using image module</li> </ul>                                                                                                                                                                          | LO4 |
| 5 | Advanced | <ul> <li>5. Numpy, Pandas, Matplotlib, Seaborn, Scipy</li> <li>5.1 Introduction to Numpy, Creating and Printing Ndarray,<br/>Class and Attributes of Ndarray, Basic operation, Copy and<br/>view, Mathematical Functions of Numpy.</li> <li>5.2 Introduction to Pandas, Understanding Dataframe,<br/>View and Select Data, Missing Values, Data Operations,<br/>File read and write operation.</li> <li>5.3 Introduction to Matplotliblibrary, Line properties, Plots<br/>and subplots, Types of Plots, Introduction to Seaborn.</li> <li>5.4 Introduction to Scipy, ScipySub packages Integration<br/>and Optimization.</li> </ul> | LO5 |
| 6 | Project  | <ul> <li>6. Python Applications</li> <li>6.1 Build a project based on GUI applications</li> <li>6.2 Applications in Networking, Data Analytical Tools,<br/>Introduction To Ml, Introduction To Big Data</li> <li>6.3 Django Web Framework in Python<br/>Introduction to MVC and MVT architecture in Web<br/>development Django folder structure and flow of control,<br/>Web Scraping, Beautiful Soup package</li> </ul>                                                                                                                                                                                                            | LO6 |

## Lab Assessments:

**1. Term workAssessment:** At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

2. Oral/Viva Assessment: The practical and oral examination will be based on entire syllabus.

# **Text Books:**

- 1. Core Python Programming, Dr. R. Nageswara Rao, Dreamtech Press
- 2. Zed A. Shaw, "Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code", Addison Wesley; 3 edition (1 October 2013).
- 3. YashavantKanetkar, "Let us Python: Python is Future, Embrace it fast", BPB Publications; 1 edition (8 July 2019).
- 4. Dusty Phillips, "Python 3 object-oriented Programming", Second Edition PACKT Publisher August 2015.
- 5. John Grayson, "Python and Tkinter Programming", Manning Publications (1 March 1999).

#### **References:**

- 1. Eric Matthes, "Python Crash Course A hands-on, Project Based Introduction to programming" No Starch Press; 1 edition (8 December 2015).
- 2. Paul Barry, "Head First Python" O'Reilly; 2 edition (16 December 2016)
- 3. Andreas C. Mueller, "Introduction to Machine Learning with Python", O'Reilly; 1 edition (7 October 2016)
- 4. David Beazley, Brian K. Jones, "Python Cookbook: Recipes for Mastering Python 3", O'Reilly Media; 3 edition (10 May 2013).
- 5. Bhaskar Chaudhary, "Tkinter GUI Application Development Blueprints: Master GUI programming in Tkinter as you design, implement, and deliver 10 real world application", Packt Publishing (November 30, 2015)

| Subject Code | Subject Name   | Total (Credits) |
|--------------|----------------|-----------------|
| ET 291       | Mini Project I | 01              |

# Lab Prerequisite:

Basic Electrical and Electronics Engineering (BEEE/BEE), C programming

# Lab Objectives:

- L1. To make students familiar with the basics of electronic devices and circuits, electrical circuits and digital systems
- L2. To familiarize the students with the designing and making of Printed circuit boards(PCB)
- L3. To make students familiar with the basics Microcontroller, Arduino board and Arduino IDE (Integrated Development Environment)
- L4. To familiarize the students with the programming and interfacing of different devices with Arduino Board
- L5. To acquaint with the process of identifying the needs and converting it into the problem.
- L6. To familiarize the process of solving the problem in a group

# Lab Outcomes:

The learner will be able to

- LO1. Learn the technique of soldering and circuit implementation on general purpose printed circuit board (GPP).
- LO2. Realize the PCB design process and gain up-to-date knowledge of PCB design software. LO3. Utilize the basic electronic tools and equipments (like DMM, CRO, DSO etc.) and also perform analysis of hardware fault (Fault detection and correction)
- Lo4. Write basic codes for the Arduino board using the IDE for utilizing the onboard resources. LO5. Apply the knowledge of interfacing different devices to the Arduino board to accomplish a given task.
- LO6. Identify problems based on societal /research needs , design Arduino based projects for a given problem and demonstrate capabilities of self-learning in a group, which leads to lifelong learning

#### **Guidelines for Mini Project**

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do surveys and identify needs, which shall be converted into problem statements for mini projects in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students shall submit an implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini projects.
- A log book to be prepared by each group, wherein the group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand the problem effectively, propose multiple solutions and select the best possible solution in consultation with the guide/ supervisor. Students shall convert the best solution into a working model using various components of their domain areas and demonstrate. The solution to be validated with proper justification and report to be compiled in standard format.
- With the focus on self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it

is preferable that a single project of appropriate level and quality be carried out in two semesters by all the groups of the students. i.e. Mini Project in semester III and IV.

# Software Requirements:

Eagle:https://www.autodesk.in/products/eagle/overview,

Arduino IDE: https://www.arduino.cc/en/main/software

Hardware Requirements: Arduino Board and various interfacing devices as mentioned in syllabus

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LO<br>Mapping |
|------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1          | 1,2                                                                               | <b>Identification and Designing of Circuit</b><br>1.1 Identification of a particular application with<br>understanding of its detailed operation. Study of<br>necessary components and devices required to<br>implement the application.<br>1.2 Designing the circuit for particular application<br>(either analog, digital, electrical, analog and digital,<br>etc)                                                                                                                                                | LOI           |
| 2          | 2,3                                                                               | <b>Software simulation and Implementation on GPP</b><br>2.1 Simulation of circuit for particular application<br>using software's to verify the expected results<br>2.2 Implementation of verified circuit on general<br>purpose printed circuit board (GPP). Now Verify the<br>hardware results by using electronic tools and<br>equipment like millimeter, CRO, DSO etc.                                                                                                                                           | LO2,LO3       |
| 3          | 2,3                                                                               | <ul> <li>PCB design and optimization</li> <li>3.1 Design the circuit by placing components using PCB design software.</li> <li>3.2 Reduce the size of PCB by varying the position of components or devices for optimize use of copper clad material</li> <li>3.3 Transfer the designed PCB on Copper clad either by using a dark room or taking printout on glossy paper, etc (use available suitable method).</li> <li>3.4 Perform Etching and then Soldering.</li> </ul>                                          | LO1, LO2      |
| 4          | 2,3                                                                               | <ul> <li>Detection of Hardware faults, Result verification and understanding Troubleshooting</li> <li>4.1 Identify the hardware faults in designed circuit and subsequently rectify it</li> <li>4.2 Now again verify the hardware results by using electronic tools and equipments like millimeter, CRO, DSO etc.</li> <li>4.3 Understand the trouble shooting by removing some wired connections.</li> <li>4.4 Understand the trouble shooting of track. Troubleshoot the faculty components or devices</li> </ul> | LO3           |
| 5          | 1,2                                                                               | Introduction to Arduino Uno board and integrated development environment (IDE)                                                                                                                                                                                                                                                                                                                                                                                                                                      | LO4,LO5       |

Department of Electronics and Telecommunication Engineering - Syllabus for Undergraduate Programme

|   |         | 5.1 Write the code for blinking the on board led with  |          |
|---|---------|--------------------------------------------------------|----------|
|   |         | a specified delay                                      |          |
|   |         | Apparatus Requirement: Hardware: Arduino Board         |          |
|   |         | LED, Software: Arduino IDE Software.                   |          |
|   |         | GPIO (along with Analog pin) Programming               |          |
|   |         | 6.1 Introduction to programming GPIO, Analog and       |          |
|   |         | PWM PINS.                                              |          |
|   |         | 1 Interface any Digital Sensors to the Arduino board   |          |
|   |         | and display sensor values on the serial Monitor.       |          |
|   |         | 2 Interface any Analog sensor to the Arduino board     |          |
|   |         | and display sensor values on the serial Monitor.       |          |
|   |         | 3. Generate varying duty cycle PWM using Arduino.      |          |
| 6 | 2,3     | 6.2 Controlling output devices/Displaying              | LO4, LO5 |
|   | ,       | Introduction to different sensor (Analog and Digital), |          |
|   |         | Relays, Motors and display.                            |          |
|   |         | 1 Interface an Analog Sensor to the Arduino board and  |          |
|   |         | display sensor values on LCD/TFT/Seven segment         |          |
|   |         | Display.                                               |          |
|   |         | 2 Interface a temperature sensor to an Arduino and     |          |
|   |         | switch on a relay to operate a fan if temperature      |          |
|   |         | exceeds a given threshold. Also display the            |          |
|   |         | temperature on any of the display device               |          |
|   |         | Interfacing Communication Devices and Cloud            |          |
|   |         | Networking                                             |          |
|   |         | 7.1 Introduction to Bluetooth, Zigbee, RFID and WIFI,  |          |
|   | 2.2     | specifications and interfacing methods.                | 104 105  |
|   | 2,3     | 1 Interface Wi-Fi /Bluetooth/GSM/Zigbee/RF module      | LO4 ,LO5 |
|   |         | to Arduino and program it to transfer sensor data      |          |
|   |         | wirelessly between two devices. Any two techniques     |          |
|   |         | from the above-mentioned modules needs to be           |          |
|   |         | interfaced.                                            |          |
|   |         | Sample Projects                                        |          |
|   |         | 1. Waste Management System                             |          |
|   |         | 2. Smart City Solutions                                |          |
|   |         | 3. Energy Monitoring Systems                           |          |
|   | Dupingt | 4. Smart Classrooms and learning Solutions             | LO4,LO5, |
|   | Project | 5. Home security systems                               | LO6      |
|   |         | 6. Smart Agriculture solutions                         |          |
|   |         | 7. Healthcare solutions.                               |          |
|   |         | 8. Industrial Applications                             |          |
|   |         | 9. IoT Applications                                    |          |
|   | Ÿ       | 10. Robotics                                           |          |

#### Lab Assessments: Teamwork, Practical and Oral:

# The review/ progress monitoring committee shall be constituted by the heads of departments of each institute. The progress of the mini project to be evaluated on a continuous basis, minimum two reviews in each semester. In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

# Distribution of Term work marks for both semesters shall be as below

- Marks awarded by guide/supervisor based on log book : 10
- Marks awarded by review committee : 10
- Quality of Project report : 05

Two reviews will be conducted for continuous assessment, First shall be for finalisation of problem and proposed solution Second shall be for implementation and testing of solution.

#### Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication

# **Guidelines for Assessment of Mini Project Practical/Oral Examination:**

Report should be prepared as per the guidelines issued by the Guide. Mini Project shall be assessed through a presentation and demonstration of the working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations having experience of more than five years approved by the head of Institution. Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

# Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

# **Textbook:**

Arduino for Dummies, by John Nussey (2013)

# **References:**

- 1. R S Khandpur, "Printed circuit board", McGraw-Hill Education; 1st edition, 24 February , 2005.
- 2. Kraig Mitzner, "Complete PCB Design Using OrCAD Capture and PCB Editor", Academic Press; 2nd edition, 20 June 2019.
- 3. Arduino Projects for Dummies, by Brock Craft (2013)
- 4. Programming Arduino –Getting Started with Sketches, Simon Monk (2016)
- 5. Programming Arduino -Next Steps, by Simon Monk (2016)

# **Online Repository:**

- 1. GitHub
- 2. NPTEL Videos on Arduino Programming
- 3. Spoken Tutorial Project-IIT Bombay: https://spoken-tutorial.org/tutorialsearch/? search\_foss=Arduino&search\_language=English
- 4. Teachers are recommended to use a free online simulation platform "Tinkercad" for the simulation of Arduino based circuits before the students implement it in the hardware: https://www.tinkercad.com/

| <b>Course Code</b> | Course Name                       | Credits |
|--------------------|-----------------------------------|---------|
| ET 207             | <b>Engineering Mathematics IV</b> | 03      |

Engineering Mathematics-I, Engineering Mathematics-II and Engineering Mathematics -III

# **Course Objectives:**

- 1. To understand the basic techniques of statistics like correlation, regression, and curve fitting for data analysis, Machine learning, and AI.
- 2. To Acquaint with the concepts of probability, random variables with their distributions and expectations.
- 3. To Understand the concepts of vector spaces used in the field of machine learning and engineering problems
- 4. To understand the concepts of Calculus of Variations.
- 5. To understand the concepts of complex integration
- 6. To Use concepts of vector calculus to analyze and model engineering problems.

# Course Outcomes: The learner will be able to

- 1. Apply the concept of Correlation and Regression to the engineering problems in data science, machine learning, and AI.
- 2. Illustrate understanding of the concepts of probability and expectation for getting the spread of the data and distribution of probabilities.
- 3. Apply the concept of vector spaces and orthogonalization process in Engineering Problems.
- 4. Find the extremals of the functional using the concept of Calculus of variation.
- 5. Use the concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals
- 6. Apply the concepts of vector calculus in real life problems.

| Sr.<br>No. | Module                                           | Detailed Content                                                                                                                                                                                                                                                                                                             | Hrs. | CO<br>Mapping |
|------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| Ι          | Correlation,<br>Regression and<br>Curve Fitting, | Karl Pearson's Coefficient of correlation<br>(r),Spearman's Rank correlation coefficient (R)<br>,Lines of regression ,Fitting of first and second<br>degree curves.                                                                                                                                                          | 6    | 1             |
| Π          | Probability,<br>Probability<br>Distributions,    | Conditional probability, Total Probability and<br>Baye's Theorem, Discrete and Continuous random<br>variables, Probability mass and density function,<br>Probability distribution for random variables,<br>Expectation, Variance, Binomial distribution,<br>Poisson distribution, Normal distribution                        | 7    | 2             |
| Ш          | Linear Algebra:<br>Vector Spaces                 | Vectors in n-dimensional vector space, norm, dot<br>product, The Cauchy Schwarz inequality, Unit<br>vector ; Linear combinations, linear Dependence<br>and Independence, QR decomposition ;<br>Orthogonal projection, Orthonormal basis, Gram-<br>Schmidt process for vectors ; Vector spaces over<br>real field, subspaces. | 7    | 3             |

| IV | Calculus of<br>Variations | Euler- Lagrange equation (Without Proof), When<br>F does not contain y, When F<br>does not contain x, When F contains x, y,<br>y'.Isoperimetric problems- Lagrange Method.<br>Functions involving higher order derivatives:<br>Rayleigh-Ritz Method.                                                                              | 6 | 4 |
|----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| V  | Complex<br>Integration    | Line Integral, Cauchy's Integral theorem for<br>simple connected and multiply connected regions<br>(without proof), Cauchy's Integral formula<br>(without proof).<br>Taylor's and Laurent's series (without proof).<br>Definition of Singularity, Zeroes, poles of f(z),<br>Residues, Cauchy's Residue Theorem (without<br>proof) | 7 | 5 |
| VI | Vector<br>Integration     | Vector integral: Line Integral, Green's theorem in<br>a plane (Without Proof),<br>Stokes' theorem (Without Proof) only evaluation.<br>Gauss' divergence                                                                                                                                                                           | 6 | 6 |

# **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### **Text Books and References:**

- 1. Higher Engineering Mathematics B. V. Ramana, Tata Mc-Graw Hill Publication
- 2. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 3. Advanced engineering mathematics H.K. Das, S. Chand, Publications.
- 4. Advanced Engineering Mathematics Wylie and Barret, Tata Mc-Graw Hill.
- 5. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 6. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education.
- 7. Beginning Linear Algebra Seymour LipschutzSchaum's outline series, Mc-Graw Hill Publication.

| Course Code | Course Name                             | Credits |
|-------------|-----------------------------------------|---------|
| ET 208      | <b>Electronic Communication Systems</b> | 3+1     |

**Electronic Devices and Circuits** 

# **Course Objectives:**

The course is introduced to

- 1. Illustrate the Elements in Analog Communication Systems
- 2. Understand the concepts of Amplitude Modulation Demodulation
- 3. Learn Frequency Modulation Demodulation
- 4. Evaluate the performance of Radio Receivers
- 5. Identify pulse analog modulation techniques
- 6. Introduce digital communication systems and multiplexing techniques

#### **Course Outcomes:**

The learner will be able to

- 1. Understand the basic components and types of noises in communication system
- 2. Describe amplitude modulation; compare the types and uses of AM system
- 3. Explain the Frequency modulator demodulator circuits and analyse noise in FM system
- 4. Distinguish AM and FM receivers in circuit requirements and their performance
- 5. Sketch the output waveforms for pulse modulation techniques.
- 6. Demonstrate the principles of multiplexing and demultiplexing techniques.

| Sr.<br>No. | Module                                      | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs. | CO<br>Mapping |
|------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| Ι          | Introduction to<br>Communication<br>Systems | Elements of Analog and Digital<br>Communication Systems, electromagnetic<br>spectrum, signal bandwidth and power, types of<br>communication channels, Introduction to time<br>and frequency domain. Basic concepts of wave<br>propagation. Noise in communication systems<br>,parameters of noise, Noise Analysis- Friss<br>Formula                                                                                                                                                                                          | 05   | CO1           |
| Π          | Amplitude<br>Modulation and<br>Demodulation | Basic concepts, need for modulation,<br>waveforms (time domain and frequency<br>domain), modulation index, bandwidth,<br>voltage distribution and power calculations.<br>DSBFC: Principles, low-level and high-level<br>transmitters, DSB suppressed carrier, Balanced<br>modulators with diode (Ring modulator and<br>FET) and SSB systems.<br>Amplitude demodulation: Diode detector,<br>practical diode detector, Comparison of<br>different AM techniques, Applications of AM<br>and use of VSB in broadcast television. | 10   | CO2           |

| III | Engguanau                   | Enguary and Dhase modulation (EM and            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO3 |
|-----|-----------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 111 | Frequency<br>Modulation and | Frequency and Phase modulation (FM and          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 005 |
|     |                             | PM): Basic concepts, mathematical analysis,     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|     | Demodulation                | FM wave (time and frequency domain),            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | sensitivity, phase and frequency deviation,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | modulation index, deviation ratio, bandwidth    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | requirement of angle modulated waves, narrow    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | band FM and wideband FM. Varactor diode         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | modulator, FET reactance modulator, Direct      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | FM transmitter, indirect FM Transmitter, noise  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | triangle, pre- emphasis and de-emphasis         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | FM demodulation: Balanced slope detector,       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | Foster-Seely discriminator, Ratio detector, FM  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | demodulator using Phase lock loop, Compare      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | FM and PM.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| IV  | AM and FM                   | Characteristics of radio receivers, AM Radio    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO4 |
|     | Receivers                   | Receiver: TRF, Super - heterodyne receiver      | , The second sec |     |
|     |                             | block diagram, tracking and choice of IF, AGC   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | and its types and Double Conversion Radio       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | Receiver, FM receiver block diagram,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| V   | Pulse                       | Sampling theorem for low pass signal, proof     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO5 |
|     | Modulation                  | with spectrum, Nyquist criteria, Sampling       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     | Techniques                  | techniques, aliasing error and aperture effect. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     | -                           | Analog Pulse Techniques : PAM, PWM, PPM         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | generation, detection and applications.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | Digital Techniques : Basics of PCM system,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | Delta modulation (DM) and Adaptive Delta        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | Modulation (ADM). Comparison of Digital         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | techniques                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| VI  | Multiplexing                | Frequency Division Multiplexing transmitter &   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO6 |
|     | and                         | receiver block diagram and applications. Time   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     | Demultiplexing              | Division Multiplexing transmitter & receiver    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     | Techniques                  | block diagram and applications. T1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             | System, PAM TDM system                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                             |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

**Electronics and Communication Laboratory :** 

Lab Prerequisite:

Electronic Devices and Circuits

Software Requirements: Matlab

Hardware Requirements: Kits for AM, DSB-SC, DSB-FC, SSB, FM, PAM, PWM, PPM, Superheterodyne receiver, TDM, FDM

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                            | Hrs. |
|------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|------|
| 1          | 1, 2                                                                              | Generation and detection of AM (DSB-FC, DSB-SC,SSB) signals. | 2    |
| 2          | 1, 2                                                                              | Generation and detection of FM signals.                      | 2    |
| 3          | 3                                                                                 | Study of AM broadcast receiver (Super heterodyne).           | 2    |
| 4          | 1                                                                                 | Generation of PAM signal and verify the sampling theorem.    | 2    |

| 5 | 1 | Generation of PPM, PWM signal. | 2 |
|---|---|--------------------------------|---|
|   |   |                                |   |

| 6 | 3    | Study of TDM and FDM multiplexing techniques.                         | 2 |
|---|------|-----------------------------------------------------------------------|---|
| 7 | 2, 3 | Implement Pre-emphasis and De-emphasis using Spice /Matlab Simulation | 2 |
| 8 | 2, 3 | Generate AM & FM using Matlab Simulation                              | 2 |

#### **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

**Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

#### **Text Books:**

- 1. Kennedy and Davis, "Electronics Communication System", Tata McGraw Hill, Fourth edition.
- 2. B.P. Lathi, Zhi Ding "Modern Digital and Analog Communication system", Oxford
- 3. University Press, Fourth edition.
- 4. Wayne Tomasi, "Electronics Communication Systems", Pearson education, Fifth edition.

#### **References:**

- 1. Taub, Schilling and Saha, "Taub's Principles of Communication systems", Tata McGraw Hill, Third edition.
- 2. P. Sing and S.D. Sapre, "Communication Systems: Analog and Digital", Tata McGraw Hill, Third edition.
- 3. Simon Haykin, Michel Moher, "Introduction to Analog and Digital Communication", Wiley, Second edition.
- 4. Dennis Roddy and John Coolen, Electronic Communication, Pearson, 4/e, 2011.

| Course Code | Course Name                | Credits |
|-------------|----------------------------|---------|
| ET 209      | Linear Integrated Circuits | 3+1     |

- 1. Basic Electrical & Electronics Engineering
- 2. Electronic Devices and Circuits

# **Course Objectives:**

- 1. To understand basic concepts of operational amplifiers.
- 2. To understand various linear and non-linear applications of operational amplifier.
- 3. To understand specifications of A/D and D/A converter and their types.
- 4. To understand the fundamentals of IC555 and its applications.
- 5. To understand PLL IC 565 and VCO IC 566 and its applications.
- 6. To understand various voltage regulator integrated circuits.

# **Course Outcomes:**

Having successfully completed this course, the student will be able to

- 1. Understand the basic building blocks and fundamentals of operational amplifiers.
- 2. Develop skills to design linear and nonlinear applications of op-amp.
- 3. Analyze various ADC and DAC techniques.
- 4. Explain and compare the working of multivibrators using timer IC 555 and its applications.
- 5. Gain knowledge about PLL IC 565 and VCO IC 566 and its applications.
- 6. Illustrate the functions of various voltage regulator integrated circuits.

| Sr.<br>No. | Module                                  | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hrs. | CO<br>Mapping |
|------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| Ι          | Basics of<br>Operational<br>Amplifier   | Block diagram of Op-Amp, Ideal and practical characteristics of op-amp, Configurations of Op-Amp: Operational amplifier open loop and closed loop configurations.                                                                                                                                                                                                                                                                                                                                                                    | 4    | CO1           |
| Ш          | Linear<br>Applications<br>of OP-AMP     | Inverting and non-inverting amplifier, voltage<br>follower, summing and difference amplifier, current<br>amplifier, voltage to current converter and current to<br>voltage converter, Integrator & differentiator (ideal<br>& practical), Instrumentation amplifier and<br>applications, Active Filters: First and Second order<br>active low pass, high pass, band pass, band reject<br>and Notch filters. Positive feedback, Barkhausen's<br>criteria, Sine Wave Oscillators: RCphase shift<br>oscillator, Wien bridge oscillator. | 9    | CO2           |
| Ш          | Non-linear<br>Applications<br>of OP-AMP | Comparators: Inverting comparator and non-<br>inverting comparator, zero crossing detectors,<br>window detector, Schmitt Triggers: Inverting<br>Schmitt trigger, non-inverting Schmitt<br>trigger,Waveform Generators: square wave                                                                                                                                                                                                                                                                                                   | 7    | CO2           |

|    |                                                                | generator and triangular wave generator, Basics of<br>Precision Rectifiers: Half wave and full wave<br>precision rectifiers, peak detector, sample and hold<br>circuit.                                                                                                                                                                                                                                                            |   |             |
|----|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|
| IV | Analog to<br>Digital and<br>Digital to<br>Analog<br>Convertors | Specifications of D/A converter,DAC techniques:<br>weighted resistor DAC and R-2R ladder DAC,<br>Specifications of A/D converter, ADC<br>techniques:flash ADC, dual slope ADC, successive<br>approximation ADC.                                                                                                                                                                                                                    | 5 | CO3         |
| V  | Special<br>Purpose<br>Integrated<br>Circuits                   | Functional block diagram and working of IC 555,<br>Design of Astable and Monostable multivibrator<br>using IC 555, Applications of Astable and<br>Monostable multivibrator as Pulse width modulator<br>and Pulse Position Modulator, Functional block<br>diagram and working of VCO IC 566 and<br>application as frequency modulator, Functional<br>block diagram and working of PLL IC 565 and<br>application as FSK Demodulator. | 8 | CO4,<br>CO5 |
| VI | Voltage<br>Regulators                                          | Functional block diagram, working and design of<br>three terminal fixed (78XX, 79XX series) and three<br>terminal adjustable (LM317, LM337) voltage<br>regulators, Functional block diagram, working and<br>design of general purpose IC 723 (HVLC and<br>HVHC). Introduction and block diagram of<br>switching regulator.                                                                                                         | 6 | CO6         |

# Lab Prerequisite:

Basic Electrical & Electronics Engineering

Electronic Devices & Circuits

Software Requirements: Tina, LTspice and Proteus

Hardware Requirements: Function Generator, CRO, multimeter along with basic components required for designing the circuit.

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4.Project/Case<br>Study/Seminar | Detailed Lab Description                                                          | Hrs. |
|------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------|
| 1          | 1,2                                                                              | Design inverting and non-inverting amplifier using IC 741.                        | 2    |
| 2          | 1,2                                                                              | Design summing amplifier using op-amp IC 741                                      | 2    |
| 3          | 1,2                                                                              | Design difference amplifier using op-amp IC 741                                   | 2    |
| 4          | 2,3                                                                              | Design and analyze Integrator using op-amp IC 741                                 | 2    |
| 5          | 2,3                                                                              | Design and analyze Differentiator using op-amp IC 741                             | 2    |
| 6          | 1,2                                                                              | Design Wein bridge and RC phase shift Oscillator using op-amp IC 741              | 2    |
| 7          | 2,3                                                                              | Design and analyze second order High pass and Low pass filter using op-amp IC 741 | 2    |
| 8          | 2,3                                                                              | Design Instrumentation amplifier using 3 Op-Amp.                                  | 2    |

| 9  | 1,2 | Design Precision rectifier using op-amp IC 741                   | 2 |
|----|-----|------------------------------------------------------------------|---|
| 10 | 2,3 | Design Square & Triangular wave generator using op-amp IC        | 2 |
|    |     | 741                                                              |   |
| 11 | 1,2 | Design Schmitt trigger using op-amp IC 741                       | 2 |
| 12 | 2,3 | Design and implement 2bit R-2R ladder DAC.                       | 2 |
| 13 | 2,3 | Design and implement flash ADC                                   | 2 |
| 14 | 2,3 | Design Astablemultivibrator using IC 555 for fixed frequency     | 2 |
|    |     | and variable duty cycle.                                         |   |
| 15 | 2,3 | Design Monostable Multivibrator using IC 555.                    | 2 |
| 16 | 2,3 | Design Low Voltage Low Current voltage regulator using IC 723.   | 2 |
| 17 | 2,3 | Design High Voltage High Current voltage regulator using IC 723. | 2 |
| 18 | 2,3 | Design Frequency Modulator using IC 566                          | 2 |

# Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

**Oral/Viva Assessment:** The practical and oral examination will be based on entire syllabus.

#### **Text Books:**

- 1. Ramakant A. Gaikwad, "Op Amps and Linear Integrated Circuits", Pearson Education
- 2. Salivahanan and Kanchanabhaskaran, "Linear Integrated Circuits", TMH
- 3. D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.

| Course Code | Course Name               | Credits |
|-------------|---------------------------|---------|
| ET 210      | Digital Signal Processing | 03      |

Signals and systems

#### **Course Objectives:**

- 1. To introduce students with Discrete fourier transform and Fast fourier transforms for analysis of Discrete time signals and systems.
- 2. To use and design techniques for implementation of IIR digital filters.
- 3. To use and design techniques for implementation of FIR digital filters.
- 4. To introduce Finite Word Length effects in Digital Filters.
- 5. To introduce the students to digital signal processors and its applications.
- 6. To use and understand multirate digital signal processing.

# Course Outcomes: The learner will be able to

- 1. Analyze the discrete time signals and system using different transform domain techniques
- 2. Apply the knowledge of design of IIR digital filters to meet arbitrary specifications.
- 3. Apply the knowledge of design of FIR digital filters to meet arbitrary specifications
- 4. Understand the effect of hardware limitations on performance of digital filters.
- 5. Develop different signal processing applications using DSP processors
- 6. Analyze discrete-time filter banks and multi-rate signal processing

| Module | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                     | Hrs<br>• | CO<br>Mapping |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|
| I      | Discrete Fourier Transform and Fast Fourier Transform:<br>Definition and Properties of DFT, IDFT, Circular convolution,<br>Computation of linear convolution using circular convolution,<br>Filtering of long data sequences: Overlap-Save and Overlap-Add<br>Method<br>FFT: Fast Fourier Transforms (FFT), Radix-2 decimation in time<br>and decimation in frequency FFT algorithms, inverse FFT    | 8        | CO1           |
| Ш      | IIR Digital Filters:<br>Analog filter design -Butterworth filters, Chebyshev Type I filters,<br>Mapping of S-plane to Z-plane, IIR filter design by impulse<br>invariance method and Bilinear transformation method, Design of<br>IIR digital Butterworth filters and Chebyshev Type I filters.<br>Analog and Digital frequency transformations                                                      | 8        | CO2           |
| ш      | FIR Digital Filters-<br>Introduction of FIR digital filters, Minimum Phase, Maximum<br>Phase, Mixed Phase and linear phase FIR filters, location of the<br>zeros of linear phase FIR filters, Gibbs phenomenon,<br>Design of FIR filters using Window techniques (Rectangular,<br>Hamming, Hanning, Blackmann), Design of FIR filters using<br>Frequency Sampling technique, Comparison of FIR & IIR | 7        | CO3           |
| IV     | Finite Word Length effects in Digital Filters-<br>Quantization, truncation and rounding, Input quantization error,                                                                                                                                                                                                                                                                                   | 6        | CO4           |

|    | Product quantization error, Coefficient quantization error, Zero-<br>input limit cycle oscillations, Overflow limit cycle oscillations,<br>Scaling.                                                                                                                                                                                                                                                                                                                             |   |     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|    | Quantization in Floating Point realization of IIR digital filters,<br>Finite word length effects in FIR digital filters                                                                                                                                                                                                                                                                                                                                                         |   |     |
| v  | DSP Processors-<br>Introduction to General Purpose and Special Purpose DSP<br>processors, fixed point and floating point DSP processor, digital<br>signal processor architecture, Pipelining, multiplier and<br>accumulator (MAC), Very long instruction word Architecture<br>(VLIW)<br>Architecture of TMS320C6X fixed and floating DSP processors.<br>Applications of digital signal processing-Speech processing,<br>Radar Signal Processing, Biomedical Applications in DSP | 6 | CO5 |
| VI | Multirate DSP and Filter Bank:<br>Introduction and concept of Multirate Processing, Decimator and<br>Interpolator, Decimation and Interpolation by Integer numbers<br>Sample rate conversion using Polyphase filter structure, Filter<br>Banks                                                                                                                                                                                                                                  | 4 | CO6 |

#### **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### **Text Books:**

- 1. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press, 2015
- 2. Nagoor Kani, "Digital Signal Processing", Tata McGraw Hill Education Private Limited.
- 3. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing", A Practical Approach by, Pearson Education
- 4. S. Salivahanan, C. Gnanpriya, Digital Signal processing, McGraw Hill
- 5. Ramesh Babu, "Digital Signal Processing", Scientech Publication (India) Private Limited

#### **References:**

- 1. Proakis J., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education.
- 2. B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", Tata McGraw Hill, 2004.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete Time Signal Processing", Pearson, 8th Indian Reprint, 2004.

| Course Code | Course Name                      | Credits |
|-------------|----------------------------------|---------|
| ET 211      | Microprocessor & Microcontroller | 04      |

Digital System Design

# **Course Objectives:**

- 1. To understand the basic concepts of microcomputer systems.
- 2. To understand the architecture of the 16-bit Microprocessor 8086.
- 3. To understand architecture and programming of 8-bit Microcontroller 8051.
- 4. To develop knowledge of peripheral devices and their interfacing for designing 8051 based applications in Assembly Language.
- 5. To understand the architecture of PIC and AVR microcontrollers.
- 6. To understand the basics of the ARM Architecture.

# **Course Outcomes:**

The learner will be able to

- 1. Understand The Basic Concepts Of Micro Computer Systems.
- 2. Understand The architectural aspects of 8086 microprocessor.
- 3. Program 8051 microcontroller by understanding its architectural aspects.
- 4. Interface variousperipheraldevicesto8051 microcontrollers.
- 5. Design applications using microcontrollers
- 6. Develop basic knowledge about the ARM architecture.

| Module<br>No. | Unit<br>No. | Details                                                                                                                                         | Hrs. | CO<br>Mapping |
|---------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
|               | Introd      | uction to Microcomputer Systems.                                                                                                                |      |               |
|               | 1.1         | Block diagram of microprocessor-based system:<br>CPU, I/O Devices, Clock, Memory, Concept<br>ofAddress,Data and Control Bus and Tristate logic. |      |               |
| 1.            | 1.2         | Concepts of Program counter register,Reset, Stack<br>and stack pointer, Subroutine, Interrupts and Direct<br>Memory Access                      | 04   | CO1           |
|               | 1.3         | Concept of RISC CISC Architecture                                                                                                               |      |               |
|               | 1.4         | Concept of Harvard Von Neumann<br>Architecture                                                                                                  |      |               |
|               | Archit      | ectural features of 8086 Microprocessor                                                                                                         |      |               |
|               | 2.1         | Major Features Of 8086 Microprocessor.                                                                                                          |      |               |
| 2.            | 2.2         | 8086 CPU Architecture, instruction set and programming, pipelined operation,                                                                    | 10   | <b>CO2</b>    |
|               | 2.3         | Programmer's Model & Memory Segmentation.                                                                                                       | 10   | CO2           |
|               | 2.4         | 8086 pin description in detail.                                                                                                                 |      |               |
|               | 2.5         | Minimum And Maximum mode pins of 8086.                                                                                                          |      |               |
|               | 2.6         | Read and Write bus cycle of 8086                                                                                                                |      |               |

|    | 8051 N  | Aicrocontroller Architecture and assembly                                                                                                                                                             |    |     |
|----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|    |         | age programming                                                                                                                                                                                       |    |     |
|    | 3.1     | Comparison between Microprocessor and Microcontroller                                                                                                                                                 |    |     |
| 3. | 3.2     | Features, architecture and pin configurations,<br>Memory organization, Addressing modes of 8051                                                                                                       | 06 | CO3 |
|    | 3.3     | Assembler directives of 8051. Instruction Set:Data transfer,Arithmetic, Logical,Branching.                                                                                                            |    |     |
|    | 3.4     | Programs related to: arithmetic, logical, delay, input,<br>output, timer, counters, port, serial communication<br>and interrupts.                                                                     |    |     |
|    | Intern  | al Hardware of 8051 Microcontroller &                                                                                                                                                                 |    |     |
|    | Interfa | acing Applications                                                                                                                                                                                    |    |     |
|    | 4.1     | I/O Port structures, Interrupts, Timers/Counters,<br>Serial Ports And their programming.                                                                                                              |    |     |
| 4. | 4.1     | Display Interfacing:7-segment LED display, 16x2 generic alphanumeric LCD display.                                                                                                                     | 08 | CO4 |
|    | 4.2     | Analog Devices Interfacing: 8-bitADC/DAC                                                                                                                                                              |    |     |
|    | 4.4     | Motor Interfacing:dc motor,stepper motor and servomotor.                                                                                                                                              |    |     |
|    | PIC a   | nd AVR Microcontrollers                                                                                                                                                                               |    |     |
| 5. | 5.1     | PIC family Categories and importance<br>(10F/12F/16F/18F), PIC18 Architecture and<br>Features, Assembly Language Programming:<br>Branch, Arithmetic and Logic Instructions.<br>Peripheral Interfacing | 06 | CO5 |
|    | 5.2     | AVR Microcontroller: Architecture and Features,<br>Standard I/O interrupts                                                                                                                            |    |     |
|    | 5.3     | Comparison of PIC and AVR microcontrollers.                                                                                                                                                           |    |     |
|    | The A   | RM Architecture                                                                                                                                                                                       |    |     |
| 6. | 6.1     | ARM Introduction, Concept of Cortex-A, Cortex-R<br>and Cortex-M, Architectural Inheritance,<br>Introduction and features of ARM7,                                                                     | 05 | COA |
|    | 6.2     | Programmer's Model and Pipelining, Exceptions,<br>Interrupts and Vector Table,                                                                                                                        | 05 | CO6 |
|    | 6.3     | Instruction set: Data processing and transfer, control flow. Thumb Instruction Set Support                                                                                                            |    |     |

# Lab Prerequisite:

Basic Electrical and Electronics Engineering, Engineering Physics I & II Software Requirements: Experiments can be conducted on Assembler, Emulator Hardware Requirements: Hardware kits

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                                                                      | Hrs. |
|------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------|
| 1          | 1                                                                                 | To perform the basic arithmetic and logical operations using the 8086 Microprocessor                                                   | 2    |
| 2          | 2                                                                                 | To write an assembly language program to search a character in a string using 8086                                                     | 2    |
| 3          | 3                                                                                 | To write an assembly language program for password checking using 8086.                                                                | 2    |
| 4          | 1                                                                                 | To write an assembly language program to perform<br>Arithmetic and Logical Operations using 8051<br>microcontroller.                   | 2    |
| 5          | 1                                                                                 | To write an assembly language program<br>To transfer of data bytes between Internal<br>and External Memory using 8051 microcontroller. | 2    |
| 6          | 2                                                                                 | To write an assembly language program to perform<br>experiments based on General Purpose Input-Output &<br>Timers.                     | 2    |
| 7          | 3                                                                                 | Programs for Interfacing of SSD/LCD with 8051 microcontroller.                                                                         | 2    |
| 8          | 3                                                                                 | Program for Serial communication of 8051 using UART.                                                                                   | 2    |
| 9          | 3                                                                                 | Programs for Interfacing of Stepper Motor with 8051 microcontroller.                                                                   | 2    |
| 10         | 3                                                                                 | Programs for Interfacing of DC Motor with 8051 microcontroller.                                                                        | 2    |
| 11         | 1                                                                                 | Perform DC motor speed control using PWM with PIC microcontroller                                                                      | 2    |
| 12         | 2                                                                                 | Interface ADC with PIC microcontroller                                                                                                 | 2    |
| 13         | 3                                                                                 | Interface Different Sensors and LCD with PIC microcontroller                                                                           | 2    |
| 14         | 4                                                                                 | Mini project based on any application related to (8051/<br>PIC) microcontroller.                                                       | 2    |

# Theory Assessment:

# **Internal Assessment: 40 marks**

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

# **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term workAssessment:** At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

Oral/Viva Assessment: The practical and oral examination will be based on entire syllabus.

#### **Text Books:**

- 1. Microprocessor and Interfacing: By Douglas Hall (TMH Publication)
- 2. M. A. Mazidi, J. G. Mazidi and R. D. Mckinlay, "The 8051 Microcontroller & Embedded systems", Pearson Publications, Second Edition 2006.
- 3. C. Kenneth J. Ayala and D. V. Gadre, "The 8051 Microcontroller & Embedded system using assembly & 'C' ", Cengage Learning, Edition 2010.

#### **Reference Books:**

- 1. 8086 Microprocessor Programming and Interfacing the PC: By Kenneth Ayala (West Publication)
- 2. Microcomputer Systems: 8086/8088 family Architecture, Programming and Design: By Liu & Gibson (PHI Publication).
- 3. Satish Shah, "The 8051 Microcontrollers", Oxford publication first edition 2010.
- 4. "MCS@51 Microcontroller, Family users Manual" Intel

| Course Code | Course Name                 | Credits |
|-------------|-----------------------------|---------|
| ET 212      | Personal Finance Management | 02      |

# Course objectives: The course is aimed

- 1. To introduce the basic concepts of finance and their practical application.
- 2. To demonstrate the process of drafting a financial budget.
- 3. To explain investment avenues and planning of personal finance.
- 4. To develop portfolio strategies for individual and institutional investor
- 5. To discuss various components of insurance and tax management.
- 6. To introduce financial frauds ,measures to avoid frauds and resources of frauds.

**Course outcomes:** On successful completion of course learner/student will be able:

- 1. To know the basic concepts of finance and interpret current business positions by reading books of accounts.
- 2. To analyze investment avenues and plan personal finance to develop portfolio strategies for individuals.
- 3. To develop skills to interpret current market position.
- 4. To create analytical approach for financial decisions.
- 5. To learn and understand Tax and Insurance management.
- 6. To identify financial frauds and understand the level of financial aspects.

| Module<br>No | Module                                                                                                                                                                                     | Detailed Contents                                                                                                                                                                                  | Hrs. |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1            | Introduction to<br>Personal                                                                                                                                                                | Financial Planning Process: Goal, Vision and mission,<br>Components of Personal Financial Plan, Advantages and                                                                                     | 3    |
|              | Financial<br>Planning                                                                                                                                                                      | developing personal financial plan                                                                                                                                                                 |      |
| 2            | Financial<br>Budget                                                                                                                                                                        | Meaning and Process of Drafting Financial<br>Budget,Components of Financial Budget,Drafting<br>Financial Budget                                                                                    | 3    |
| 3            | Investment<br>Management                                                                                                                                                                   | Meaning of Investment,Concept of Risk and Return and<br>Time Value of Money,Investment Avenues,Portfolio<br>Creation and Management                                                                | 6    |
| 4            | Insurance and<br>SpendingComponents of Insurance: Life Insurance, Health<br>Insurance ,Property Insurance ,Spending ManagementManagementInsurance ,Property Insurance ,Spending Management |                                                                                                                                                                                                    | 3    |
| 5            | Tax<br>Management                                                                                                                                                                          | Introduction to Tax Regime and Tax Returns, Introduction<br>to Income Tax and its impact on Incomes ,Tax on<br>property: Revenue and Capital Incomes, Tax<br>Management, Tax Saving, Tax Avoidance | 3    |
| 6            | Financial Frauds                                                                                                                                                                           | Meaning and Types of Fraud, Investment Frauds, Online<br>Payment Frauds, Identity Theft, Mass Marketing Fraud<br>,Measures to avoid frauds, Recourse from frauds, Cases of<br>Frauds               | 6    |

#### **Internal Assessment: 20 marks**

Consisting of Two compulsory internal assessments 20 Marks each. The final marks will be the average score of both the assessments.

#### **End Semester Examination: 40 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### **Books and References:**

- 1. Financial Management: I M Pandey, Vikas Publishing House.
- 2. Financial Management: M.Y. Khan, P.K. Jain, Tata McGraw Hill.
- 3. Financial Management: Prassana Chandra, Prentice Hall.
- 4. Investment Analysis & Portfolio Management- Prasanna Chandr, ... McGrawHi
- 5. Wealth Management- Dun & Bradstreet, Tata McGrawHill
- 6. Wealth Management- S.K. Bagachi, Jaico publishing house

| Course Code | Course Name                 | Credits |
|-------------|-----------------------------|---------|
| ET 213      | Programming (Matlab/Scilab) | 01      |

# Lab Prerequisite:

Signals and Systems

Engineering Mathematics I, Engineering Mathematics II, Engineering Mathematics III

# Lab Objectives: To teach the students

- L1. Ability to implement and develop Discrete fourier transform
- L2. Ability to simulate and design of IIR digital filters
- L3. Ability to simulate and design of FIR digital filters.
- L4. Understand the methods of finding correlation.

L5. Understand the methods of finding probability distributions and complex Integration.

L6. Understand the processes of Gram Schmidt and Rayleigh Ritz Methods.

# Lab Outcomes: The learner will be able

- 1. To implement and develop Discrete fourier transform
- 2. To simulate and design of IIR digital filters
- 3. To simulate and design of FIR digital filters
- 4. To implement the Correlation methods in engineering problems in data science
- 5. To implement the methods of finding probability distributions and complex Integration in engineering problems.
- 6. To implement the processes of Gram Schmidt and Rayleigh Ritz Methods in engineering problems.

# Applied Mathematics -IV, Scilab programming SEM I and SEM II. Software Requirements: Sci Lab, Matlab

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                                                                                     | LO<br>Mapping |
|------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1          | Basic                                                                             | To perform DFT and IDFT of the discrete time sequence and sketch the magnitude and phase spectrum.                                                    | LO1           |
| 2          | Basic                                                                             | To perform circular convolution of discrete time<br>sequences using DFT and IDFT method and compute<br>linear convolution using circular convolution. | LO1           |
| 3          | Design                                                                            | To Design analog low pass Butterworth and Chebyshev filter                                                                                            | LO2           |
| 4          | Design                                                                            | To Design an IIR butterworth low pass filter using impulse in-variance method .                                                                       | LO2           |
| 5          | Design                                                                            | To Design an IIR butterworth low pass filter using bilinear transformation method.                                                                    | LO2           |
| 6          | Design                                                                            | To Design an IIR Chebyshev low pass filter using bilinear transformation method.                                                                      | LO2           |

| 7  | Advanced | To Design a FIR low pass, high pass filter using various windowing methods and plot their frequency response. | LO3 |
|----|----------|---------------------------------------------------------------------------------------------------------------|-----|
| 8  | Basic    | Write a program in scilab to find Karl Pearson's coefficient of correlation                                   | LO4 |
| 9  | Basic    | Write a program in scilab to find Spearman's Rank correlation.                                                | LO4 |
| 10 | Basic    | Write a program in scilab to find Probability Distributions.                                                  | LO5 |
| 11 | Advanced | Write a program in scilab for Gram Schmidt Process.                                                           | LO6 |
| 12 | Advanced | Write a program in scilab for Rayleigh Ritz method.                                                           | LO6 |
| 13 | Advanced | Write a program in scilab to find Complex Integration.                                                        | LO5 |

# Lab Assessments:

**Term workAssessment:** At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

Oral/Viva Assessment: The practical and oral examination will be based on entire syllabus.

# **Text Books:**

- 1. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press, 2015
- 2. Nagoor Kani, "Digital Signal Processing", Tata McGraw Hill Education Private Limited.
- 3. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing", A Practical Approach by, Pearson Education
- 4. S. Salivahanan, C. Gnanpriya, Digital Signal processing, McGraw Hill
- 5. Ramesh Babu, "Digital Signal Processing", Scientech Publication (India) Private Limited
- 6. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 7. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education

# **References:**

- 1. Proakis J., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education.
- 2. B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", Tata McGraw Hill, 2004.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete Time Signal Processing", Pearson, 8th Indian Reprint, 2004.
- 4. Advanced engineering mathematics H.K. Das, S . Chand, Publications.
- 5. Applied Numerical Methods with MATLAB for Engineers and Scientists by Steven Chapra, McGraw Hill.
- Scilab spoken tutorials videos. (https://spoken-tutorial.org/tutorial-search/?search\_foss=Scilab&search\_language=English)

| Course Code | Course Name     | Credits |
|-------------|-----------------|---------|
| ET 292      | Mini Project II | 01      |

#### Lab Prerequisite: ET 291 Project

#### Lab Objectives:

- 1. To improve the knowledge of electronics hardware among students
- 2. To familiarize the students with the programming and interfacing of different devices with Arduino and Raspberry Pi Board.
- 3. To increase students' critical thinking ability and provide solutions to some real time problems.
- 4. To acquaint with the process of identifying the needs and converting it into the problem.
- 5. To familiarize the process of solving the problem in a group
- 6. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems
- 7. To inculcate the process of self-learning and research.

# Lab Outcomes: The learner will be able to

- 1. Write code using python language using IDE for utilizing the onboard resources.
- 2. Apply the knowledge of interfacing different devices to the Raspberry Pi board to accomplish a given task.
- 3. Identify problems based on societal /research needs.
- 4. Design Raspberry Pi based projects for a given problem.
- 5. Draw the proper inferences from available results through theoretical/ experimental/simulations
- 6. Demonstrate capabilities of self-learning in a group, which leads to lifelong learning

#### **Software Requirements:**

- 1. Raspbian OS: https://www.raspberrypi.org/downloads/
- 2. Win32 Disk Imager: https://sourceforge.net/projects/win32diskimager/
- 3. SD Card Formatter: https://www.sdcard.org/downloads/formatter/

#### **Online Repository:**

- 1. GitHub
- 2. NPTEL Videos on Raspberry Pi and Arduino Programming
- 3. https://www.electronicsforu.com/raspberry-pi-projects
- 4. https://circuitdigest.com/simple-raspberry-pi-projects-for-beginners
- 5. https://www.electronicshub.org/raspberry-pi-projects/

#### Hardware Requirements:

Raspberry Pi Boards, Sensors and Peripherals

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4.Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LO<br>Mapping    |
|------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1          | 1, 2                                                                             | <ul> <li>Introduction to Raspberry Pi:</li> <li>1.1 What is Raspberry Pi? Downloading and Installation of NOOBS, First PowerUp&amp; Having a Look around, Introduction to the Shell and Staying updated.</li> <li>1.2 Familiarization with Raspberry PI and perform necessary software installation. Apparatus Requirement: Hardware: Raspberry PI Board, Memory of 16GB, Power adapter, Memory Writer. Software: NOOBS, Raspbian OS, Win32 disk Imager, SD-Formatter software.</li> </ul>                                                                                                                                                                                                                                                                                                                                                       | LO1, LO2         |
| 2          | 1, 2                                                                             | <b>Interfacing with Input / Output Devices using Python</b><br>2.1 Introduction to Python, Connecting to the outside<br>World with GPIO. 1 To Interface LED/Buzzer with<br>Raspberry PI and write a program to turn ON LED for 1<br>sec after every 2 sec. Apparatus Requirement: Raspberry<br>PI with inbuilt Python Package, LED, Buzzer.<br>2.2 To interface Push Button / Digital Sensor (IR/LDR)<br>with Raspberry PI and write a program to turn ON LED<br>when Push button is pressed or at sensor detection.<br>Apparatus Requirement: Raspberry PI with inbuilt Python<br>Package, Push Button Switch, Digital Sensor (IR/LDR).<br>2.3. To interface analog sensor using MCP 3008 analog to<br>digital converter chip. Apparatus Requirement: Raspberry<br>PI with inbuilt Python Package, analog sensor, MCP 3008<br>chip.             | LO2,<br>LO4, LO5 |
| 3          | 1, 2                                                                             | <ul> <li>Interfacing Temperature Sensor, Motors, Display Devices.</li> <li>3.1 Introduction to Temperature sensor (Analog and Digital), Relays, Motors (DC, Stepper) and Driver circuits.</li> <li>3.2 To interface DHT11 sensor with Raspberry PI and write a program to print temperature and humidity readings. Apparatus Requirement: Raspberry PI with inbuilt Python Package, DTH11 Sensor.</li> <li>3.3 To interface motor using relay with Raspberry PI and write a program to turn ON motor when push button is pressed. Apparatus Requirement: Raspberry PI with inbuilt Python Package, Relays, Motor Driver, Motors.</li> <li>3.4 To interface OLED with Raspberry PI and write a program to print temperature and humidity readings on it. Apparatus Requirement: Raspberry PI with inbuilt Python Package, OLED display</li> </ul> | LO2,<br>LO4, LO5 |

|   |      | Interfacing Communication Devices and Cloud                             |              |
|---|------|-------------------------------------------------------------------------|--------------|
|   |      | Networking                                                              |              |
|   |      | 4.1 Introduction to Bluetooth, Zigbee, RFID and WIFI,                   |              |
|   |      | specifications and interfacing methods.                                 |              |
|   |      | 4.2 To interface Bluetooth/Zigbee/RFID/WiFI with                        |              |
|   |      | Raspberry PI and write a program to send sensor data to                 |              |
|   |      | smartphones using Bluetooth/Zigbee/RFID/WIFI. (Any                      |              |
|   |      | -one can be used for performing) Apparatus Requirement:                 |              |
|   |      | Raspberry PI with inbuilt Python Package,                               | LO2,         |
| 4 | 2, 3 | Bluetooth/Zigbee/RFID/WIFI.                                             | LO3,         |
|   |      | 4.3 Introduction to Cloud computing, different types                    | LO4, LO5     |
|   |      | cloud networks and interconnection using Raspberry Pi                   |              |
|   |      | 4.4 Write a program on Raspberry PI to upload                           |              |
|   |      | temperature and humidity data from thingspeak cloud.                    |              |
|   |      | Apparatus Requirement: Raspberry PI with inbuilt Python                 |              |
|   |      | Package, Cloud networks such as thingspeak(open                         |              |
|   |      | source), AWS, Azure, etc. anyone can be used for                        |              |
|   |      | understanding purpose and building projects.                            |              |
|   |      | Understanding of Communication Protocols                                |              |
|   |      | 5.1 Introduction to MQTT, IFTTT protocols and                           |              |
|   |      | configuration steps. 1 Write a program on Raspberry Pi to               | LO2,         |
| 5 | 2, 3 | publish temperature data to MQTT broker                                 | LO2,<br>LO3, |
| 5 | 2, 5 | 5.2 Write a program on Raspberry Pi to subscribe to                     | L04, L05     |
|   |      | MQTT broker for temperature data and print it.                          | 101,105      |
|   |      | 5.3 Configuration of Web Server using Raspberry Pi.                     |              |
|   |      | Sample Projects                                                         |              |
|   |      | 1. MQTT Based Raspberry Pi Home Automation:                             |              |
|   |      | Controlling Raspberry Pi GPIO using MQTT Cloud                          |              |
|   |      | 2. License Plate Recognition using Raspberry Pi and                     |              |
|   |      | OpenCV                                                                  |              |
|   |      | 3. Real Time Face Recognition with Raspberry Pi and                     |              |
|   |      | OpenCV                                                                  |              |
|   |      | 4. Smart Garage Door Opener using Raspberry Pi                          |              |
|   |      | 5. Remote Controlled Car Using Raspberry Pi and                         |              |
|   |      | Bluetooth                                                               |              |
|   |      | 6. Fingerprint Sensor based door locking system using                   |              |
|   |      | Raspberry Pi                                                            |              |
|   |      | 7. Raspberry Pi Ball Tracking Robot using Processing                    |              |
| 6 | 4    | 8. Web Controlled Home Automation using Raspberry                       | LO3, LO6     |
|   |      | Pi                                                                      |              |
|   |      | 9. Line Follower Robot using Raspberry Pi                               |              |
|   |      | 10. Raspberry Pi based Smart Phone Controlled Home                      |              |
|   |      | Automation                                                              |              |
|   |      | 11. Web Controlled Raspberry Pi Surveillance Robotic                    |              |
|   |      | Car                                                                     |              |
|   |      | 12. Raspberry Pi Based Weight Sensing Automatic Gate                    |              |
|   |      | 13. Raspberry Pi Emergency Light with Darkness and                      |              |
|   |      | AC Power Line Off Detector                                              |              |
|   |      | 14. Detecting Colors using Raspberry Pi and Color<br>Sensor TCS3200     |              |
|   |      |                                                                         |              |
|   |      | 15. Measure Distance using Raspberry Pi and HCSR04<br>Ultrasonic Sensor |              |
|   |      |                                                                         |              |

| 16. Call and Text using Raspberry Pi and GSM Module  |
|------------------------------------------------------|
| 17. Raspberry Pi Home Security System with Email     |
| Alert                                                |
| 18. Raspberry Pi Based Obstacle Avoiding Robot using |
| Ultrasonic Sensor                                    |
| 19. Web Controlled Notice Board using Raspberry Pi   |
| 20. RF Remote Controlled LEDs Using Raspberry Pi     |
| 21. RFID and Raspberry Pi Based Attendance System    |
| 22. Raspberry Pi Interactive Led-Mirror              |
| 23. Garage Door monitor using Raspberry Pi           |
| 24. Raspberry Pi Digital Code Lock on Breadboard     |
| 25. Electronic Voting Machine using Raspberry Pi     |

# **Guidelines for Mini Project**

Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.

Students should do surveys and identify needs, which shall be converted into problem statements for mini projects in consultation with faculty supervisor/head of department/internal committee of faculties.

Students shall submit an implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini projects.

A log book to be prepared by each group, wherein the group can record weekly work progress, guide/supervisor can verify and record notes/comments.

Faculty supervisors may give inputs to students during mini project activity; however, focus shall be on self-learning.

Students in a group shall understand the problem effectively, propose multiple solutions and select the best possible solution in consultation with the guide/ supervisor.

Students shall convert the best solution into a working model using various components of their domain areas and demonstrate.

With the focus on self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV.

However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on a case by case basis.

#### Lab Assessments:

# **Termwork, Practical and Oral:**

Term Work The review/ progress monitoring committee shall be constituted by the head of departments of each institute.

The progress of the mini project to be evaluated on a continuous basis, minimum two reviews in each semester.

In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions. Distribution of Term work marks for both semesters shall be as below;

- Marks awarded by guide/supervisor based on log book : 10
- Marks awarded by review committee : 10
- Quality of Project report : 05

Review/progress monitoring committee may consider the following points for assessment based on following general guidelines.

A students' group shall complete project in all aspects including,

- Identification of need/problem
- Proposed final solution
- Procurement of components/systems
- Building prototype and testing

Two reviews will be conducted for continuous assessment, First shall be for finalisation of problem and proposed solution Second shall be for implementation and testing of solution.

# **Oral/Viva Assessment:**

Assessment criteria of Mini Project. Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individuals as member or leader
- 13. Clarity in written and oral communication

All criteria in generic may be considered for evaluation of performance of students in mini projects.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

Report should be prepared as per the guidelines issued.

# Lab Prerequisite: ECP1 Project

Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by the head of Institution.

Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual as member or leader
- 8. Clarity in written and oral communication

#### **Text Books:**

- 1. Raspberry Pi Documentation: https://www.raspberrypi.org/documentation/
- 2. The Official Raspberry Pi Beginner's Book by **raspberrypi.org/magpi**: https://www.raspberrypi.org/magpi-issues/Beginners\_Book\_v1.pdf

3. The Official Raspberry Pi Projects Book by **raspberrypi.org/magpi**: https://www.raspberrypi.org/magpi-issues/Projects\_Book\_v1.pdf

# **References:**

- 1. Simon Monk, "Hacking Electronic: Learning Arduino and Raspberry Pi", McGraw-Hill Education TAB; 2 edition (September 28, 2017)
- 2. Simon Monk, "Raspberry PI Cookbook Software and Hardware Problems and Solutions" O'Reilly 2nd Edition
- 3. Simon Monk, Programming the Raspberry Pi, 2nd Edition: Getting Started with Python" The McGraw Hill
- 4. "DK Workbooks: Raspberry Pi Project Workbook", DK Children; Workbook edition (March 7, 2017)
- 5. Donald Norris, "Raspberry Pi Electronic Projects for Evil Genius" McGraw-Hill Education TAB; 1 edition (May 20, 2016)

| Course Code | Course Name           | Credits |
|-------------|-----------------------|---------|
| ET 301      | Digital Communication | 4       |

Electronic Communication System, Signals and systems

# **Course Objectives:**

- 1. To understand the basics of probability theory and Digital Communication
- 2. To Understand the basics of information theory, source coding techniques.
- 3. To evaluate performance of different error control coding schemes.
- 4. To compare the performance of line c distinguish various digital modulations techniques.
- 5. To understand impulse response of a matched filter for optimum detection

# **Course Outcomes:**

After successful completion of the course learner will be able to

- 1. Understand the basics of probability theory and Digital Communication.
- 2. Identify various source coding schemes
- 3. Design and implement different error correction codes
- 4. Describe and determine the performance of line codes and methods to mitigate inter symbol interference
- 5. Describe various digital modulations techniques.
- 6. Illustrate the impulse response of a matched filter for optimum detection

| Sr.<br>No. | Module                                                                   | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                  | Hours | CO<br>Mapping |
|------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| 1          | Introduction to<br>Probability<br>Theory and<br>Digital<br>Communication | <ul> <li>1.1 Information, Probability, Conditional<br/>Probability of independent events, Relation between<br/>probability and probability Density, Rayleigh<br/>Probability Density, CDF, PDF.</li> <li>1.2 Introduction to Digital Communication System,<br/>Advantages of the digital representation of the signal,<br/>Comparative study of analog and digital Communication<br/>System</li> </ul>                            | 05    | 01            |
| 2          | Information<br>Theory and<br>Source Coding                               | <ul> <li>2.1 Block diagram and sub-system description of a digital communication system, measure of information and properties, entropy and its properties</li> <li>2.2 Shannon's Source Coding Theorem, Shannon-Fano Source Coding, Huffman Source Coding</li> <li>2.3 Differential Entropy, joint and conditional entropy, mutual information and channel capacity, channel coding theorem, channel capacity theorem</li> </ul> | 06    | 02            |

#### **Theory Syllabus:**

| 3 | Error Control                           | 3.1 Types of error control, error control codes, linear                                                                        |     |     |
|---|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 5 | Systems                                 | block codes, systematic linear block codes, generator                                                                          | 09  | 03  |
|   | ~ ) = = = = = = = = = = = = = = = = = = | matrix, parity check matrix, syndrome testing, error                                                                           | • • |     |
|   |                                         | correction, and decoder implementation                                                                                         |     |     |
|   |                                         | 3.2 Systematic and Non-systematic Cyclic codes:                                                                                |     |     |
|   |                                         | encoding with shift register and error detection and                                                                           |     |     |
|   |                                         | correction                                                                                                                     |     |     |
|   |                                         | 3.3 Convolution Codes: Time domain and transform                                                                               |     |     |
|   |                                         | domain approach, graphical representation, code tree,                                                                          |     |     |
| 4 | Baseband                                | <ul><li>trellis, state diagram, decoding methods</li><li>4.1 Discrete PAM signals and it's power spectra</li></ul>             |     |     |
| 4 | Modulation and                          | <ul><li>4.1 Discrete PAM signals and it's power spectra</li><li>4.2 Inter-symbol interference, Nyquist criterion for</li></ul> | 05  | 04  |
|   | Demodulation                            | zero ISI, sinusoidal roll-off filtering, correlative coding,                                                                   | 05  | 04  |
|   | Demodulation                            | equalizers, and eye pattern                                                                                                    |     |     |
| ~ |                                         |                                                                                                                                |     |     |
| 5 | Bandpass<br>Modulation &                | 5.1 Band-pass digital transmitter and receiver model, digital modulation schemes                                               | 10  | 05  |
|   | Demodulation                            | 5.2 Generation, detection, signal space diagram,                                                                               | 10  | 03  |
|   | Demodulation                            | spectrum, bandwidth efficiency, and probability of error                                                                       |     |     |
|   |                                         | analysis of: Amplitude Shift Keying (ASK), Frequency                                                                           |     |     |
|   |                                         | Shift Keying (FSK)Modulations, Binary Phase Shift                                                                              |     |     |
|   |                                         | Keying (BPSK) Modulation, Quaternary Phase Shift                                                                               |     |     |
|   |                                         | Keying QPSK), M- ary PSK Modulations, Quadrature                                                                               |     |     |
|   |                                         | Amplitude Modulation (QAM), Minimum Shift Keying                                                                               |     |     |
|   |                                         | (MSK)                                                                                                                          |     |     |
| 6 | Optimum                                 | 6.1 Baseband receiver ,Optimum Receiver and Filter                                                                             | 0.4 | 0.6 |
|   | Reception of                            | Matched Filter and its probability of error, Coherent                                                                          | 04  | 06  |
|   | Digital Signal                          | Reception.                                                                                                                     |     |     |

# Laboratory Syllabus:

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/<br>Case Study<br>/Seminar | Detailed Lab/Tutorial Description                                                                                                                             | Hours |
|------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1          | Basic                                                                                  | Study and analyze Line codes                                                                                                                                  | 02    |
| 2          | Advance                                                                                | Error detection and correction using Hamming code virtuallab<br>http://vlabs.iitb.ac.in/vlabs-dev/labs/mit_bootcamp/comp_netwo<br>r ks_sm/labs/exp1/index.php | 02    |
| 3          | Basic                                                                                  | To Study Generation & reception of ASK & its spectral analysis.                                                                                               | 02    |
| 4          | Basic                                                                                  | To Study Generation & reception of FSK & its spectral analysis.                                                                                               | 02    |
| 5          | Basic                                                                                  | To Study Generation & reception of PSK & its spectral analysis.                                                                                               | 02    |
| 6          | Advance                                                                                | To observe the effect of signal Distortion using EYE-Diagram                                                                                                  | 02    |
| 7          | Design                                                                                 | To Study and perform Linear Block codes                                                                                                                       | 02    |
| 8.         | Design                                                                                 | To Study and perform Cyclic Codes                                                                                                                             | 02    |
| 9.         | Design                                                                                 | To Study and perform Convolutional Codes                                                                                                                      | 02    |
| 10.        | Advance                                                                                | Matched filter impulse response for a given input                                                                                                             | 02    |

Department of Electronics and Telecommunication Engineering - Syllabus for Undergraduate Programme

#### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

#### End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# Laboratory Assessment:

**Term workAssessment:** At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

Oral/Viva Assessment : The practical and oral examination will be based on entire syllabus.

# **Text Books:**

- 1. Digital Communication, Sanjay Sharma, S. K. Kataria and sons
- 2. H. Taub, D. Schilling, and G. Saha, —Principles of Communication Systems, Tata Mc- Graw Hill, New Delhi, Third Edition, 2012.
- 3. Lathi B P, and Ding Z., —Modern Digital and Analog Communication Systems, Oxford University Press, Fourth Edition, 2009.
- 4. Haykin Simon, —Digital Communication Systems, John Wiley and Sons, New Delhi, Fourth Edition, 2014

#### **References:**

- 1. Sklar B, and Ray P. K., —Digital Communication: Fundamentals and applications, Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.
- 2. T L Singal, —Analog and Digital Communication, Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 3. P Ramakrishna Rao, —Digital Communication, Tata Mc-Graw Hill, New Delhi, First Edition, 2011.
- 4. M F Mesiya, —Contemporary Communication systems, Mc-Graw Hill, Singapore, First Edition, 2013

| Course Code | Course Name                 | Credit |
|-------------|-----------------------------|--------|
| ET 302      | Electromagnetic Engineering | 3      |

Basics of Vector Algebra.

# **Course Objectives:**

- 1. To learn electromagnetics and the laws governing it.
- 2. To learn electromagnetics, including static and dynamic electromagnetic fields and waves within and at the boundaries of media.
- 3. To understand the basics of transmission lines and solve problems using smith chart.
- 4. To extend the students' understanding about the propagation of the waves by different types such as ground waves, sky wave and space wave.

# Course Outcomes: Six (Based on Bloom's Taxonomy)

- 1. To analyze Static electric field and laws governing it.
- 2. To analyze Steady magnetic field and laws governing it.
- 3. To describe electromagnetics field including steady and time varying in terms of Maxwell's equations.
- 4. To apply Maxwell's equation to solve various electromagnetic phenomenon such as electromagnetic wave propagation in different medium, power in EM wave.
- 5. To understand the basics of transmission lines and solve problems related to it.
- 6. To understand different types of wave propagation.

| Module<br>no | Module                                                           | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                           | Hours | CO<br>Mapping |
|--------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| I            | Electrostatics                                                   | <ul> <li>1.1 Coulomb's Law &amp; Electric Field Intensity,<br/>Electric Field due to point charge, line charge<br/>and surface charge distributions.</li> <li>1.2 Electric Flux Density, Gauss's Law and its<br/>Application ,Divergence theorem.</li> <li>1.3 Electric potential, Relationship between<br/>Electric field &amp; potential , Potential Gradient.</li> <li>1.4 Poisson's and Laplace's equation.</li> </ul> |       | CO1           |
| П            | Steady<br>Magnetic field                                         | <ul> <li>2.1-Biot-Savart's Law</li> <li>2.2-Ampere's circuital law and its application,<br/>Magnetic flux density</li> <li>2.3-Magnetic vector potential</li> </ul>                                                                                                                                                                                                                                                        | 03    | CO2           |
| Ш            | Maxwell's<br>Equation for<br>steady and<br>time varying<br>field | <ul> <li>3.1 Faraday's Law, Displacement current</li> <li>3.2 Maxwell's equation for a static field.</li> <li>3.3 Maxwell's equation for time varying field</li> <li>3.4 Boundary conditions for electric and magnetic fields</li> </ul>                                                                                                                                                                                   | 09    | CO3           |

#### Theory Syllabus:

| 11/ | Liniform Direct | 4.1 Uniform Diana Waxaa in fuaa area and        | 06 | CO4 |
|-----|-----------------|-------------------------------------------------|----|-----|
| IV  | Uniform Plane   | 1                                               | 06 | CO4 |
|     | Waves           | conducting medium.                              |    |     |
|     |                 | 4.2-Helmholtz equation, Solution of wave        |    |     |
|     |                 | equation.                                       |    |     |
|     |                 | 4.3-Wave propagation in conducting medium,      |    |     |
|     |                 | skin depth                                      |    |     |
|     |                 | 4.4 Poynting theorem, power flow for a plane    |    |     |
|     |                 | wave                                            |    |     |
| V   | Transmission    | 5.1 Transmission line parameters, equivalent    | 08 | CO5 |
|     | Lines           | circuit, Transmission line equations, Input     |    |     |
|     |                 | impedance, Standing wave ratio, reflection      |    |     |
|     |                 | coefficient                                     |    |     |
|     |                 | 5.2 Smith Chart, Applications of Smith Chart in |    |     |
|     |                 | finding VSWR ,and reflection coefficient,       |    |     |
|     |                 | admittance calculations, impedance calculations |    |     |
|     |                 | over length of line.                            |    |     |
| VI  | Radio Wave      | 6.1-Types of wave propagation: Ground wave,,    | 06 | CO6 |
|     | Propagation     | sky wave, space wave.                           |    |     |
|     | Topuguion       | 6.2 Curvature of earth, effect of interference  |    |     |
|     |                 | zone, shadowing effect of hills and building,   |    |     |
|     |                 | atmospheric absorption, Super-refraction,       |    |     |
|     |                 | scattering phenomena, troposphere propagation   |    |     |
|     |                 | and fading.                                     |    |     |
|     |                 |                                                 |    |     |
|     |                 | 6.3 Measures of Ionosphere Propagation:         |    |     |
|     |                 | Critical frequency, Angle of incidence,         |    |     |
|     |                 | Maximum usable frequency, Skip distance,        |    |     |
|     |                 | Virtual height, Attenuation and fading of waves |    |     |
|     |                 | in ionosphere                                   |    |     |

# **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# **Textbooks:**

- 1. Electromagnetic Waves and Radiating Systems- Jordan and Balmain, PHI, 2nd edition
- 2. Principles of Electromagnetics Engineering- Matthew N. O.Sadiku, S.V.Kulkarni, Oxford university press, 6th edition.
- 3. Engineering Electromagnetics, William H Hayt and John A Buck, Tata McGraw-Hill
- 4. Publishing Company Limited, 7th edition

# **References:**

- 1. R.K. Shevgaonkar, Electromagnetic Waves, TATA McGraw Hill Companies.
- 2. J.A. Administer, "Electromagnetic", McGraw Hill Companies, 2nd Edition, 2006
- 3. Bhag Guru and Huseyin Hiziroglu, "Electromagnetic field theory fundamentals", Cambridge University Press, 2nd Edition, 2010.

| Course Code | Course Name                       | Credits |
|-------------|-----------------------------------|---------|
| ET 303      | Image processing & Machine Vision | 3       |

Signals and Systems, Digital Signal Processing, Python Programming Skill Lab

# **Course Objectives:**

- 1. To cover the fundamentals and mathematical models in digital image processing and Machine Vision
- 2. To teach quality enhancement of image through filtering operations.
- 3. To teach the students image morphology and restoration techniques.
- 4. To expose the students to segmentation techniques in image processing and Machine Vision.
- 5. To teach the techniques of extracting image attributes like regions and shapes.
- 6. To learn classification and recognition algorithms for machine vision

# **Course Outcomes:**

After successful completion of the course student will be able to

- 1. Understand fundamentals of image processing and machine vision.
- 2. Enhance the quality of image using spatial and frequency domain techniques for image enhancement.
- 3. Learn image morphology and restoration techniques.
- 4. Learn image segmentation techniques based on the principle of discontinuity and similarity using various algorithms.
- 5. Represent boundaries and shapes using standard techniques.
- 6. Classify the object using different classification methods.

| Sr.<br>No. | Module                                                                 | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hours | CO<br>Mapping |
|------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| I          | Digital Image<br>Fundamentals<br>and Point<br>processing<br>techniques | <ul> <li>1.1 Introduction –Steps in Digital Image<br/>Processing, concept of spatial and intensity<br/>resolution, Relationships between pixels.</li> <li>1.2 Point Processing : Image Negative, Log<br/>Transform, Power Law transform, Bit plane<br/>slicing, Contrast stretching , Histogram</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4     | CO1           |
|            |                                                                        | equalization and Histogram Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |               |
| Π          | Image<br>Enhancement                                                   | <ul> <li>2.1 Spatial Domain filtering : The Mechanics of<br/>Spatial Filtering, Smoothing Spatial Filters-Linear<br/>Filters-Averaging filter, Order-Statistic Filters-<br/>Median filter, Application of Median filtering for<br/>Noise removal Sharpening Spatial Filters- The<br/>Laplacian, Unsharp Masking and Highboost<br/>Filtering, Using First-Order Derivatives — The<br/>Gradient- Sobel, Prewitt and Roberts</li> <li>2.2 Frequency Domain Filtering: Introduction to</li> <li>2-D DFT and its application in frequency domain<br/>filtering, Wavelet transform, Haar transform</li> <li>2.3 Frequency Domain Filtering Fundamentals,<br/>Fourier Spectrum and Phase angle ,Steps for<br/>Filtering in the Frequency Domain,<br/>Correspondence Between Filtering in the Spatial</li> </ul> | 8     | CO2           |

Department of Electronics and Telecommunication Engineering - Syllabus for Undergraduate Programme

|     | 1                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 | ,       |
|-----|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|
|     |                                                         | and Frequency Domains, Frequency domain Image<br>Smoothing and sharpening filter - Ideal,<br>Butterworth, Gaussian                                                                                                                                                                                                                                                                                                                                     |   |         |
| III | Image<br>morphology<br>and<br>restoration               | <ul> <li>3.1 Morphology: Erosion and Dilation, Opening<br/>and Closing, The Hit-or-Miss Transformation,<br/>Boundary extraction, Hole filling, Thinning and<br/>thickening</li> <li>3.2 Restoration : A Model of the Image<br/>Degradation/Restoration Process, Noise models,<br/>Removal periodic noise, Principle of Inverse<br/>filtering</li> </ul>                                                                                                | 6 | CO3     |
| IV  | Image<br>Segmentation                                   | <ul> <li>4.1 Point, Line, and Edge Detection: Detection of Isolated Points, Line detection, edge models, Canny's edge detection algorithm, Edge linking: Local processing and boundary detection using regional processing (polygonal fitting)</li> <li>4.2 Thresholding : Foundation, Role of illumination and reflectance, Basic global thresholding</li> <li>4.3 Region Based segmentation: Region Growing, Region Splitting and merging</li> </ul> | 8 | CO3,CO4 |
| V   | Introduction<br>to machine<br>vision and<br>descriptors | <ul> <li>5.1 Principle of machine vision, real world applications, chain code, simple geometric border representation, Fourier Transform of boundaries, Boundary description using segment sequences</li> <li>5.2 Introduction to Texture, co-occurence matrix</li> </ul>                                                                                                                                                                              | 6 | CO3,CO5 |
| VI  | Machine<br>Vision<br>Algorithms                         | <ul> <li>6.1 Knowledge representation, Classification<br/>Principles, Classifier setting, Classifier Learning,<br/>Confusion Matrix</li> <li>6.2 K-means clustering algorithm,<br/>Introduction, bays decision theory continuous<br/>case, two category classification, Bayesian<br/>classifier ,Support vector machine setting,<br/>Classifier Learning, Support vector<br/>machine, cluster analysis</li> </ul>                                      | 6 | CO5,CO6 |

# Theory Assessment:

# **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# **Text Books:**

- 1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision" Cengage Engineering, 3rd Edition, 2013
- 2. Gonzalez and Woods, "Digital Image Processing", Pearson Education, India, Third Edition.
- 3. R. O. Duda and P. E. hart, Pattern classification and scene analysis, Wiley Interscience publication
- 4. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006

# **References:**

- 1. Anil K.Jain, "Fundamentals of Image Processing", Prentice Hall of India, First Edition,
- 2. W Pratt, "Digital Image Processing", Wiley Publication, 3rd Edition, 2002

| Course Code | Course Name      | Credits |
|-------------|------------------|---------|
| ET 304      | Embedded Systems | 04      |

Microcontroller and microprocessors, C programming

#### **Course Objectives:**

- 1. Understand the basics of an embedded system.
- 2. To study concepts involved in Embedded Hardware.
- 3. To study concepts involved in Embedded Software for System realization.
- 4. To learn Real-time programming to design time-constrained embedded systems
- 5. To learn the development of Embedded system
- 6. To study various Embedded System applications

# **Course Outcomes:**

- 1. Students will be able to define and explain embedded systems and the different embedded system design technologies explain the various metrics or challenges in designing an embedded system.
- 2. Student will be able to cultivate ability to understand the internal architecture and interfacing of different peripheral devices and Devices and Communication Buses
- 3. Students will be able to use Embedded C programming language to Implement embedded systems.
- 4. Student will be able to know Program Modeling Concepts with Real Time Operating Systems
- 5. Students will able to design embedded system based on Cortex series
- 6. Students will be able to foster the ability to understand the role of embedded systems application as well as select the relevant microcontrollers for various industrial applications.

| Sr.<br>No. | Module               | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hours | CO<br>Mapping |
|------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| 1          | Introduction         | <ul> <li>1.1 Definition, Characteristics, Classification,<br/>Applications</li> <li>1.2 Design metrics of Embedded system and<br/>Challenges in optimization of metrics.</li> </ul>                                                                                                                                                                                                                                                                                                                             | 03    | CO1           |
| 2          | Embedded<br>Hardware | <ul> <li>2.1 Features of Embedded cores-<br/>Microcontroller, ASIC, ASSP, SoC, FPGA, RISC<br/>and CISC cores.</li> <li>2.2 Types of memories: SRAM, DRAM,<br/>PROM,EEPROM,FLASH, NVRAM.</li> <li>2.3 ARM Cortex-M3 Features, Architecture,<br/>Programmer's model, Special Registers,<br/>Operating Modes and States, MPU, Memory map<br/>and NVIC.</li> <li>2.4 Low power - Need and techniques. Case<br/>study of Low Power modes in Cortex-M3.</li> <li>2.5 Communication Interfaces: Comparative</li> </ul> | 13    | CO2           |

# **Theory Syllabus:**

|   |                                         | study of Serial communication Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     |
|---|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|   |                                         | -RS-232, RS-485, SPI, I2C, CAN, USB (v2.0),<br>Bluetooth, Zig-Bee. (Frame formats of above<br>protocols are not expected)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |
|   |                                         | <b>2.6</b> Selection Criteria of Sensors and Actuators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |
| 3 | Embedded<br>Software                    | <b>3.1</b> Program Modeling concepts: DFG, CDFG, FSM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03 | CO3 |
|   |                                         | <b>3.2</b> Embedded firmware design approaches: super loop based approach, operating system based approach; embedded firmware development languages-assembly language based development, high level language based development.                                                                                                                                                                                                                                                                                                                                                 |    |     |
| 4 | Real-time<br>Operating<br>system        | <ul> <li>4.1 Real-time Operating system: Need of RTOS in Embedded system software and comparison with GPOS.</li> <li>4.2 Task Management: Task, Task states, Multitasking, Task scheduling, and algorithms-Preemptive SJF, Round-Robin, Priority, Rate Monotonic Scheduling, Earliest Deadline First</li> <li>4.3 Inter-process communication: Message queues, Mailbox, Event timers.</li> <li>4.4 Task synchronization: Need, Issues- Deadlock, Race condition, live Lock, Solutions using Mutex, Semaphores.</li> <li>4.5 Shared Data problem, Priority inversion.</li> </ul> | 10 | CO4 |
| 5 | Testing and<br>Debugging<br>Methodology | 5.1 Testing & Debugging: Hardware testing tools,<br>Boundary-scan/JTAG interface concepts,<br>Emulator.<br>Software Testing tools, Simulator, Debugger.<br>White-Box and Black-Box testing.                                                                                                                                                                                                                                                                                                                                                                                     | 03 | CO5 |
| 6 | System<br>Integration<br>(Case Studies) | <ul> <li>6.1 Embedded Product Design Life-Cycle (EDLC)- Waterfall Model</li> <li>6.2 Hardware-Software Co-design</li> <li>6.3 Case studies for Automatic Chocolate Vending Machine, Washing Machine, Smart Card, highlighting <ol> <li>i) Specification requirements (choice of components)</li> <li>ii) Hardware architecture</li> <li>iii) Software architecture</li> </ol> </li> </ul>                                                                                                                                                                                       | 07 | CO6 |

# Laboratory Syllabus:

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advance<br>4. Project/<br>Case Study<br>/Seminar | Detailed Lab/Tutorial Description                                                                                 | Hours |
|------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|
| 1          | Basic                                                                                 | Interfacing of LEDs /switches with any embedded core.(ARM/STM32,MSP430 etc)                                       | 02    |
| 2          | Basic                                                                                 | Interfacing of a relay with any embedded core.<br>(ARM/STM32,MSP430 etc)                                          | 02    |
| 3          | Basic                                                                                 | Interfacing of LCD/ Seven segment display with any<br>embedded core.(ARM/STM32,MSP430 etc)                        | 02    |
| 4          | Basic                                                                                 | Interfacing of Ultrasonic/Humidity sensor with any<br>embedded core. (ARM/STM32,MSP430 etc)                       | 02    |
| 5          | Basic                                                                                 | Interfacing of Temperature sensor with any embedded core.<br>(ARM/STM32,MSP430 etc)                               | 02    |
| 6          | Design                                                                                | Interfacing of a DC motor (speed and direction control) with<br>any embedded core. (ARM/STM32,MSP430 etc)         | 02    |
| 7          | Design                                                                                | Interfacing of a stepper motor (to move by a particular angle) with any embedded core.(ARM/STM32,MSP430 etc)      | 02    |
| 8          | Design                                                                                | Implement the I2C communication (ARM/STM32, MSP430 etc)                                                           | 02    |
| 9          | Advance                                                                               | Write a Program to Create Multiple Tasks and understand the Multitasking capabilities of RTOS (FreeRTOS).         | 02    |
| 10         | Advance                                                                               | Write a Program to illustrate the Queue Management Features of FreeRTOS.                                          | 02    |
| 11         | Advance                                                                               | Write a Program to illustrate the Event Management Features of FreeRTOS.                                          | 02    |
| 12         | Design                                                                                | Write a Program to illustrate the use of Binary and Counting<br>Semaphore for Task Synchronization using FreeRTOS | 02    |

**Software Requirements:** Respective IDE platform **Hardware Requirements:** Development board of 8051/ARM/STM32, etc

# **Theory Assessment:**

# **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of 40 Marks each on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

1. **Teamwork Assessment:** Term work should consist of 8 experiments [Four Experiments should be considered from Experiment 1 to Experiment 8 and four should be from remaining from the proposed list given in above table] and one case study based on hardware/Simulation. Journal must include at

least 3 assignments on theory and practicals of "Embedded C Programming". The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments: 05-marks).

2. Oral/Viva Assessment: Viva exam to be conducted by Internal & External examiners.

# **Text Books:**

- 1. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, New Delhi, 2009.
- 2. Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 2015, Edition 3rd.
- 3. Sriramlyer, Pankaj Gupta," Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company ltd., 2003.
- 4. Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.
- 5. Dr. K.V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.

# **Reference Books/sites:**

- 1. David Simon, "An Embedded Software Primer", Pearson, 2009.
- 2. Jonathan W. Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Publisher Cengage Learning, 2012 Edition 3rd.
- 3. Andrew Sloss, Domnic Symes, Chris Wright, "ARM System Developers Guide Designing and Optimising System Software", Elsevier, 2004
- 4. Frank Vahid, Tony Givargis, "Embedded System Design A Unified Hardware/Software Introduction", John Wiley & Sons Inc., 2002.
- 5. www.freertos.org

| Course Code | Course Name                             | Credits |
|-------------|-----------------------------------------|---------|
| ET 305      | <b>Programming (Java and scripting)</b> | 1       |

#### Lab Objectives: Three to Four

L1. To understand the functions and expression used in java coding

- L2. To learn how to implement object oriented design with Java
- L3. To understand how to use Java API's for program development
- L4. To understand how to design applications with threads in Java
- L5. To learn how to design Graphical User Interface (GUI) with Java Swing
- L6. To learn how to handle and manage files in Java.

# Lab Outcomes: Six Course Outcomes

- LO1: Learn to write, compile, run and test simple Java programs
- LO2. Learn to implement object oriented programming concepts using JavaProgramming.
- LO3. Learn to use and access packages and Applet's .
- LO4. Understanding multithreading in Java and designing simple applications.
- LO5. Learn to design GUI applications using Java Swing.
- **LO6.** Managing Files and I/O Handling in Java.

# Hardware Requirements: PC with windows OS, 64bit

#### Laboratory Syllabus:

|            | y bynabus.                                                                            |                                                                      |               |
|------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------|
| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/<br>CaseStudy/<br>Seminar | Detailed Lab/Tutorial Description                                    | LO<br>Mapping |
| 1          | 1                                                                                     | Java Program to find GCD of two number                               | LO1           |
| 2          | 1                                                                                     | Java program to convert binary number to Decimal and vise-versa      | LO1           |
| 3          | 1                                                                                     | Java program to multiply two matrix using multi-dimensional array    | LO1           |
| 4          | 2                                                                                     | Write a program to implement default and parameterized constructors. | LO2           |
| 5          | 2                                                                                     | Java program of painting in Applet                                   | LO3           |
| 6          | 3                                                                                     | Write a program to implement multithreaded                           | LO4           |
| 7          | 3                                                                                     | To develop a program to display a table using swings.                | LO5           |
| 8          | 3                                                                                     | Write a program to demonstrate Exception handling                    | LO6           |
| 9          | 1                                                                                     | Create a text file using Java file writer.                           | LO6           |
| 10         | 4                                                                                     | Mini Project using concept of Principles of Programming              | LO6           |

#### Lab Assessments:

**1. Termwork Assessment:** Term work should consist of 10 experiments. Journal must include at least 2 assignments on content of theory and practical of "Java Programming". The final certification and

acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work. Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments: 05-marks).

**2. Oral/Viva Assessment**: Practical & oral exam to be conducted by Internal & External examiners. Practical execution (10 marks) & Oral (15 marks).

#### **Text Books:**

- 1. E Balagurusamy ,"Programming with Java A Primer", Forth Edition, Tata Mcgraw-Hill Publication, 2010, ISBN: 978-0-07-014169
- 2. Khalid A. Mughal, Rolf W. Rasmussen, A Programmer's Guide to Java<sup>™</sup> SCJP Certification Third Edition, Addison-Wesley
- 3. Joyce Farrell. Programming Logic and Design, Comprehensive, 6th edition

# **References:**

- 1. H.M. Deitel, P.J. Deitel, "Java How to Program", Fifth Edition, PHL. abli atton. 2003, ISBN:81-203-2371-8
- 2. Bruce Eckel "Thinking in Java", PHI Publication
- 3. Patric Naughton ,Michael Morrsison , "The Java Handbook " LicGra Hill Publication
- 4. Steven Holzner etal . Java 2 Programming, Black Book , Dreamtech I ess .009

| Course Code | Course Name                              | Credits |
|-------------|------------------------------------------|---------|
| ET 306      | Professional Communication and Ethics II | 2       |

Course Objectives:

- 1. To enable learners to formulate professional documents in a structured manner that meets the corporate requirements.
- 2. To provide an appropriate environment, opportunity and scope to the learners to acquire skills such as collaboration, leadership qualities, assertiveness etc. necessary for group discussion and team building.
- 3. To promote the importance of having an impressive personality that will enhance self-esteem, build self-confidence and sensitize the learners in appropriate behavior.
- 4. To prepare the learners for campus placement, employability and competitive examination required for lifelong learning.
- 5. To inculcate the ethical code of conduct and corporate etiquettes.
- 6. To develop effective presentation, research and organizational and creative skills necessary for global and industrial set up.

Course Outcomes:

- 1. Learners will be able to acquire the writing skills necessary for professional documents to meet the corporate requirement.
- 2. Learners will be able to demonstrate the skills required for self-improvement and effective communication.
- 3. Develop self-confidence and behave professionally.
- 4. Learners will be able to perform successfully in competitive exams like GRE, CET and TOEFL
- 5. Able to determine the importance of ethics and etiquettes in social and professional situations.
- 6. Able to illustrate effective presentation, research organizational and creative skills necessary for lifelong learning.

# Prerequisite: Basic language skills

| Sr.<br>No. | Module                                                      | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hours | CO<br>Mapping |
|------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Structure,<br>Style and<br>Language of<br>Report<br>Writing | <ul> <li>1.1 Introducing the purpose , aim, objective and format of report</li> <li>1.2 Literature review-ability to gather and analyse information from different sources and summarize. Specific emphasis on plagiarism, use of quotation marks appropriately.</li> <li>1.3 Research Methodology</li> <li>1.4 Presenting data-figures, diagrams and labelling</li> <li>1.5 How and why to write discussion</li> <li>1.6 Citing and referencing- IEEE format</li> <li>1.7 Writing an abstract</li> </ul> | 6     | CO1           |

| Π  | Writing<br>Technical<br>Proposals                      | <ul><li>2.1 Format</li><li>2.2 Executive summary</li><li>2.3 Defining the problem and presenting the solution</li><li>2.4 Summarizing a technical proposal</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 | CO1                 |
|----|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|
| ш  | Oral Skills for<br>Employability                       | <ul> <li>3.1 Group Discussion- with special reference to leadership qualities, assertiveness, analyzing the topic, developing different perspectives, introducing and concluding the discussion.</li> <li>3.2 Interview-with special reference to introducing oneself and answering questions with confidence.</li> <li>3.3 Presentation Skills-with special reference to preparing slides, dress code, non-verbal communication including paralinguistic features, introduction and conclusion.</li> </ul>                                                                                                                                         | 4 | CO2,<br>CO4,<br>CO6 |
| IV | Personality<br>Development<br>and Social<br>Etiquettes | <ul> <li>4.1. Personality Development</li> <li>Improving self-awareness-analyzing our own experiences, looking at ourselves through the eyes of others</li> <li>Knowing and Building your own identity</li> <li>Discovering and Developing your talents</li> <li>Teamwork/collaboration</li> <li>4.2. Social Etiquettes</li> <li>Formal Dining Etiquettes</li> <li>Cubicle Etiquettes</li> <li>Responsibility in Using Social Media</li> <li>Showing Empathy and Respect</li> <li>Learning Accountability and Accepting Criticism</li> <li>Demonstrating Flexibility and Cooperation</li> <li>Selecting Effective Communication Channels</li> </ul> | 5 | CO3,<br>CO5         |
| V  | Ethics and<br>Ethical<br>codes of<br>conduct           | <ul> <li>5.1 Writing Resume and statement of purpose</li> <li>5.2 Business and corporate activities(special emphasis on business meetings)</li> <li>5.3 Personal ethics, conflicting values, choosing a moral response, the process of making ethical decisions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                         | 3 | CO4,<br>CO5         |
| VI | Content<br>writing                                     | <ul><li>6.1 Research Skills</li><li>6.2 Organizational skills</li><li>6.3 Creative Writing- Blog posts, Web pages etc.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 | CO6                 |

| Sr.<br>No. | Details of Assignments                                                                                                                | Details of Activities                                                                                                                                                                             | Hours       | CO<br>Mapping    |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|
| Ι          | Written assignment on<br>Literature Review 20<br>page report on technical<br>topic (to be included as<br>part of term work)           | Sample IEEE papers to be shared<br>with students and train them to<br>identify contributions of each author.<br>These contributions can then be<br>written in the format required in<br>journals. | 5           | CO1, CO5         |
| Π          | Written assignment on<br>summarising a technical<br>proposal<br>4 page technical<br>proposal (to be included<br>as part of term work) | Example of summarising techniques to be demonstrated.                                                                                                                                             | 4           | CO1, CO5         |
| Ш          | Oral Skills for<br>Employability- to be<br>included in term work.                                                                     | Role play and mock interviews<br>Mock group discussion<br>Mock presentation                                                                                                                       | 2<br>4<br>4 | CO2,<br>CO3, CO4 |
| IV         | Written Assignment on<br>Documentation of<br>Business Meeting                                                                         | Mock meetings                                                                                                                                                                                     | 2           | CO1, CO4         |
| V          | Written Assignment on<br>Resume writing/<br>Statement of Purpose.                                                                     | NA                                                                                                                                                                                                | 2           | CO3              |
| VI         | Written Assignment on<br>Blog Posts                                                                                                   | NA                                                                                                                                                                                                | 2           | CO6              |

#### Assessment:

Term work will consist of-

- 1. Assignments 10 marks
- 2. Group Discussion 10 marks
- 3. Interviews 5 marks
- 4. Report 5 marks
- 5. Technical Proposal 5 marks
- 6. Attendance 5 marks
- 7. Presentation 10 marks

#### **References:**

- 1. Raman Meenakshi & Sharma Sangeeta, Communication Skills, Oxford University Press
- 2. Kumar Sanjay & Lata Pushp, Communication Skills, Oxford University Press
- 3. Virendra Singh Nirban, Krishna Mohan, RC Sharma, *Business Correspondence and Report* Writing

| Course Code | Course Name                  | Credits |
|-------------|------------------------------|---------|
| ET 307      | IOT Basics and Smart Sensors | 4       |

Microprocessor & Microcontroller

Course Objectives: Introduce evolution of internet technology and need for IoT.

- 1. Discuss on IoT reference layers and various protocols and software.
- 2. To provide in depth knowledge in physical principles applied in sensing, measurement and a comprehensive understanding on how measurement systems are designed, calibrated, characterized, and analyzed.
- 3. To introduce the students to sources and detectors of various Optical sensing mechanisms and provide in-depth understanding of the principle of the basic laws and phenomena on which operation of sensor transformation of energy is based, measurement and theory of instruments and sensors.
- 4. Train the students to build IoT systems using sensors, single board computers and open source IoT platforms.
- 5. Make the students apply IoT data for business solutions in various domains in a secure manner.

# **Course Outcomes:**

- 1. Identify the IoT networking components with respect to the OSI layer.
- 2. Build schematic for IoT solutions .
- 3. Design and develop IoT based sensor systems.
- 4. Select IoT protocols and software.
- 5. Evaluate the wireless technologies for IoT.
- 6. Appreciate the need for IoT Trust and variants of IoT and compete in the design, construction, and execution of systems for measuring physical quantities

| Sr. | Module                                   | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hours | CO      |
|-----|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|
| No. |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Mapping |
| Ι   | Introduction<br>to Internet of<br>Things | Defining IoT, Characteristics of IoT, Physical design of<br>IoT, Logical design of IoT, Functional blocks of IoT,<br>Communication models & APIs, Trends in the Adoption of<br>IoT, Societal Benefits of IoT, Risks, Privacy, and Security.<br>Exemplary Device Boards, Arduino, Linux on Raspberry,<br>Interface and Programming & IOT Device. Hardware<br>Platforms and Energy Consumption, Operating Systems,<br>Time Synchronization, Positioning and Localization,<br>Medium Access Control, Topology and Coverage Control,<br>Routing: Transport Protocols, Network Security,<br>Middleware, Databases | 5     | 1       |
| Π   | Sensing and<br>Actuation                 | Sensor fundamentals and characteristics, Optical Sources<br>and Detectors, Intensity Polarization and Interferometric<br>Sensors, Strain, Force, Torque and Pressure sensors,<br>Position, Direction, Displacement and Level sensors,<br>Velocity and Acceleration sensors, Flow, Temperature and<br>Acoustic sensors, Actuators and its types: Hydraulic,<br>Pneumatic, Electrical, Thermal, Magnetic                                                                                                                                                                                                       | 7     | 2       |

# **Theory Syllabus:**

| III   | Networking                                                                 | IoT and Machine to Machine Communications, IoT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 | 3 |
|-------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
|       | and the                                                                    | protocols, Network configurations, Network Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ũ | C |
|       | Internet of                                                                | Requirements, SNMP, NETCONF, YANG,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |
|       | Things                                                                     | Interoperability in IoT. SDN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |
| IV    | Sensor<br>Networks<br>and IoT                                              | Characteristic and challenges, WSN vs Adhoc Networks,<br>Sensor node architecture, Physical layer and transceiver<br>design considerations in WSNs, Energy usage profile,<br>Choice of modulation scheme, Dynamic modulation<br>scaling, Antenna considerations.<br>Sensor Network Architecture: Data Dissemination,<br>Flooding and Gossiping-Data gathering Sensor Network<br>Scenarios, Optimization Goals and Figures of Merit,<br>Design Principles for WSNs- Gateway Concepts, Need for<br>gateway, WSN and Internet Communication, WSN<br>Tunneling,<br>Amplifiers and Sensor Noise, Importance and Adoption of | 9 | 4 |
| V     | Cloud                                                                      | Smart Sensors, Architecture of Smart Sensors<br>Interfacing and data logging with cloud, Evolution of Cloud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 | 5 |
|       | Computing                                                                  | Computation, Commercial clouds and their features, open<br>source IoT platforms, cloud dashboards, Fog Computing,<br>Introduction to big data analytics and<br>Hadoop.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 5 |
| VI    | Developing<br>Internet of<br>Things Data<br>Analytics and<br>Tools for IoT | IoT security, Need for encryption, standard encryption<br>protocol, lightweight cryptography, Quadruple Trust<br>Model for IoT-A – Threat Analysis and model for IoT-A,<br>Cloud security                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 | 6 |
| Lab S | Syllabus                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |

# Lab Syllabus

| Sr. | Level       | Detailed Lab/Tutorial Description                                  | Hours |
|-----|-------------|--------------------------------------------------------------------|-------|
| No  | 1.Basic     |                                                                    |       |
|     | 2. Design   |                                                                    |       |
|     | 3. Advanced |                                                                    |       |
|     | 4.Project/  |                                                                    |       |
|     | Case Study/ |                                                                    |       |
|     | Seminar     |                                                                    |       |
| 1   | Basic       | IoT systems Working with Raspberry pi using Python. Arduino        |       |
|     |             | platform Working with open source clouds                           | 02    |
| 2   | Design      | Python Programming for IoT Systems: Basic operations, String       |       |
|     | · ·         | manipulation, Dictionary, Signal plotting, processing and graphics | 02    |
|     |             | on cloud                                                           |       |
| 3   | Basic       | Develop a displacement measurement system with the following       |       |
|     |             | sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor     | 02    |

| 4  | Design   | After studying the characteristics of temperature sensors listed<br>below, develop a temperature measurement system for a particular<br>application using the suitable sensor. i. Thermocouple principles<br>ii. Thermistor and linearization of NTC Thermistor iii. Resistance<br>Temperature Detector iv. Semiconductor Temperature sensor<br>OA79 v. Current output absolute temperature sensor Based on | 02 |
|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    |          | sensing experiments carried out suggest a noncontact method and<br>try to complete its proof of concept.                                                                                                                                                                                                                                                                                                    |    |
| 5  | Basic    | Embedded Programming and IoT: C programming, Declarations<br>and Expressions, Arrays, Pointers, Constructs, Data structures and<br>Linked list, Embedded C (Keil).                                                                                                                                                                                                                                          | 02 |
| 6  | Design   | Working with ARM (Keil and energia) Sub Task 1: Peripheral programming of ARM7 board Sub Task 2: PWM generation Sub Task 3:Configuring CC3200, wifi configuration ,HTTP and MQTT Protocol                                                                                                                                                                                                                   | 02 |
| 7  | Basic    | Working with MSP430 (CCStudio) Sub Task 1: Port<br>programming of MSP430 microcontrollers Sub Task 2: Analog<br>to Digital Conversion using MSP430 microcontroller Sub Task<br>3: LCD display of characters and numbers. Sub Task 4: Timer                                                                                                                                                                  | 02 |
| 8  | Design   | Low power wireless transmission using Zigbee Sub Task 1 :<br>Interfacing Zigbee controller with MSP 430 microcontroller<br>using SPI/UART. Sub Task 2: Programming sleep and wake up<br>mode of MSP 430.                                                                                                                                                                                                    | 02 |
| 9  | Advanced | Design a method to analyze liquid flow velocity using a<br>non-contact measurement technique(Laser/Ultrasonic sensor).<br>Record the dynamic flow velocity using LabVIEW                                                                                                                                                                                                                                    | 02 |
| 10 | Advanced | Consider a real time data available in college campus and<br>develop a data analytic system to determine the average, trend<br>and prediction                                                                                                                                                                                                                                                               | 02 |
| 11 | Project  | Mini Project                                                                                                                                                                                                                                                                                                                                                                                                | 04 |

#### **Software Requirements:**

Arduino IDE, Noobs, Keil and energia, CCStudio

# Hardware Requirements:

Arduino, Raspberry Pi, ARM7 Board, MSP430, Inductive transducer, Hall Effect sensor, Thermocouple, Thermistor, Temperature sensor, LCD Display, Zigbee Chip, Motors, LabVIEW and Peripherals, Miscellaneous

#### **Theory Assessment:**

#### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

#### **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Laboratory Assessment:

# Term work for 25 marks:

At least 10 Experiments from the above mentioned list must be performed during the "Laboratory session batch wise". A mini project based on the entire syllabus must be performed by every student

individually (can be hardware or Computation/simulation based project must be encouraged). Term work assessment must be based on the overall performance of the student with experiments and assignments graded from time to time.

# End Semester Practical/Oral Examination: 25 Marks

Pair of Internal and External Examiner should conduct practical/viva based on contents. Distribution of marks for practical/viva examination shall be as follows:

Practical Examination: 15 Marks Oral Examination: 10 Mark

# **Text Books:**

- 1. Alessandro Bassi, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob van Kranenburg, Sebastian Lange, Stefan Meissner, "Enabling things to talk"
- 2. Designing IoT solutions with the IoT Architecture Reference Model", Springer Open, 2016
- 3. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis Karnouskos, Stefan Avesand, David Boyle, "From Machine to Machine to Internet of Things", Elsevier Publications, 2014.
- 4. Jacob Fraden, "HandBook of Modern Sensors: physics, Designs and Applications", 2015, 3rd edition, Springer, New York.
- 5. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland.

# **References:**

- 1. Vijay Madisetti , Arshdeep Bahga, Adrian McEwen (Author), Hakim Cassimally "Internet of Things A Hands-on-Approach" Arshdeep Bahga & Vijay Madisetti, 2014
- 2. LuYan, Yan Zhang, Laurence T. Yang, Huansheng Ning, The Internet of Things: From RFID to the Next-Generation Pervasive Network, Aurbach publications, March, 2008.
- 3. RonaldL. Krutz, Russell Dean Vines, Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Wiley-India, 2010.
- 4. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2nd edition, CRC Press, Florida.
- 5. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York.

# **Text Books:(For Laboratory)**

- 1. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis Karnouskos, Stefan Avesand, David Boyle, "From Machine to Internet of Things", Elsevier Publications, 2014.
- 2. Jacob Fraden, "HandBook of Modern Sensors: physics, Designs and Applications", 2015, 3rd edition, Springer, New York.
- 3. John H. Davies, "MSP430 Microcontroller Basics", 2011, 2nd edNewnes publishing, New York.
- 4. Holger Karl, Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks" 2011, 1st ed., John Wiley & Sons, New Jersey

# **References:**(For Laboratory)

- 1. Vijay Madisetti , Arshdeep Bahga, Adrian McEwen (Author), Hakim Cassimally "Internet of Things: A Hands-on-Approach" Arshdeep Bahga & Vijay Madisetti, 2014.
- 2. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York.
- 3. Sergey Y. Yurish,"Digital Sensors and Sensor Systems: Practical Design", 2011, 1st ed., IFSA publishing, New York.
- 4. Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", 2009, 1 st ed., John Wiley & Sons, New Jersey.

| Course Code | Course Name                          | Credits |
|-------------|--------------------------------------|---------|
| ET 308      | PCB Design and Electronics Equipment | 4       |
|             | Troubleshooting                      |         |

Basic Circuit theory, Electromagnetics

# **Course Objectives:**

- 1. Understanding of PCB design fundamentals
- 2. Ability to select the circuit, components and prepare layout
- 3. Ability to design PCB and perform drilling, component mounting, soldering, tinning, masking and testing.
- 4. Ability to design a PCB with SMD Components
- 5. Inculcate PCB design rules at high frequencies and to be aware of SMD components and packages.
- 6. To develop a skill set to work on real life projects and design

# **Course Outcomes:**

- 1. Explain types of PCBs and basic procedure to design a PCB
- 2. Identify various tools and to become familiar with electronic components and their packages/footprints
- 3. Illustrate the use of PCB CAD tools and their features for practical designs and schematic preparation.
- 4. Fabricate PCB and become familiar with drilling, tinning, masking and soldering of components.
- 5. To compare PCB design at high frequency with low frequency
- 6. Fabricate PCBs for simple and advanced circuits and perform hardware testing to validate the design.

| Sr.  | Module          | Detailed Content                                    | Hours  | CO      |
|------|-----------------|-----------------------------------------------------|--------|---------|
| No.  | Wiodule         | Detaneu Content                                     | 110015 | Mapping |
| 110. |                 |                                                     |        | mapping |
|      |                 |                                                     |        |         |
|      |                 |                                                     |        |         |
| Ι    | Fundamentals of | Types of PCBs: General purpose, Single sided,       | 6      | CO1,    |
|      | PCB Design      | Double Sided, Multi-layered PCBs.                   |        | CO2     |
|      |                 | PCB materials, Introduction to layout Design,       |        |         |
|      |                 | Rules for track (track length, width, size, joint   |        |         |
|      | v v             | and angle etc)                                      |        |         |
|      |                 | PCB Design rules at radio frequency,                |        |         |
|      |                 | Photolithography, Introduction to softwares like    |        |         |
|      |                 | Eagle, Express-PCB, OrCAD, Ki-CAD,                  |        |         |
|      |                 | Altium, Proteus.                                    |        |         |
|      |                 | Files and their extensions, Schematic/Layout        |        |         |
|      |                 | editor, library editor, Text editor, preparation of |        |         |
|      |                 | Gerber/dxf/dwg/step/iges files, Short-cut keys      |        |         |
|      |                 | and special commands, Forward and backward          |        |         |
|      |                 | annotation, Electrical components and               |        |         |
|      |                 | packages, Component libraries, footprint,           |        |         |

# Theory Syllabus:

|    |                                     | symbol, Plug ins, Routing, Assembling, Multi-<br>layered PCB Design, Making of Schematic<br>Symbol, Export, import and modify library<br>components, Making of component footprints,<br>Portability/compatibility of project files                                                                                                                                                                                                                                                                                  |   |             |
|----|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|
| Π  | PCB fabrication processes           | <ul> <li>Pre-PCB fabrication processes: Selection of circuit and components, Selection of PCB type, track printing, legend printing, Schematic preparation, Electronic rule checking (ERC)</li> <li>Post-PCB fabrication processes: Implementation of PCB: Etching, tinning, Masking (Green, Red, White, Black, Blue and Pink), Drilling, pads, vias, Component mounting, soldering, EMI-EMC issues, Hardware testing, Packaging / Enclosure Design</li> </ul>                                                      | 8 | CO3,<br>CO4 |
| Ш  | Advanced PCB<br>Design              | High frequency PCB design technology,<br>Selection of SMD (Surface mounted devices)<br>components packages / libraries and its<br>mounting, Design Rules, Plated through hole<br>technology                                                                                                                                                                                                                                                                                                                         | 7 | CO3,<br>CO4 |
| IV | Introduction to<br>Troubleshooting  | Troubleshooting Basics, Safety measures and<br>Precaution during Troubleshooting, Common<br>Troubleshooting Techniques, Test and<br>Measuring instruments for troubleshooting,<br>Measurement of A.C. voltage and D.C. voltage<br>using multimeter for the given circuit,<br>Continuity test of PCB track, wiring, switch<br>etc., Inspection of solder joints, defects of<br>soldered joints in given circuits.                                                                                                    | 5 | CO5         |
| V  | Device<br>Troubleshooting           | Testing of Active and passive components<br>separately or Mounted on PCB like: Resistor,<br>Capacitors, Inductors, Switches, Relays,<br>Transformers, Fuses, Connectors, Single/three<br>phase MCBs, single phase ELCBs, RJ45<br>connector, Diodes, Transistors, FETs,<br>MOSFET, SCR, DIAC,TRIAC, Displays<br>(LCD or LED), Opto electronics components,<br>Crystal oscillator, Fault diagnosis in op-amp<br>circuits. Testing Various parameters of<br>electronic active/passive components using a<br>data book. | 7 | CO6         |
| VI | Troubleshooting<br>Digital Circuits | Logic IC families, Packages in Digital ICs, IC<br>identification, IC pin-outs, Handling ICs,<br>Digital troubleshooting methods – typical<br>faults, testing digital ICs with pulse<br>generators, Special consideration for fault<br>diagnosis in digital circuits, Handling                                                                                                                                                                                                                                       | 6 | CO6         |

| precautions for ICs sensitive to static         |  |
|-------------------------------------------------|--|
| electricity, Testing flip-flops, counters,      |  |
| registers, multiplexers and demultiplexers,     |  |
| encoders and decoders; Tri-state logic. Testing |  |
| Various parameters of digital IC using data     |  |
| book.                                           |  |

#### Laboratory Syllabus:

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>Project/ Case<br>Study/ Seminar | Detailed Lab/Tutorial Description                                            | Hours |
|------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------|
| 1          | Design                                                                           | Design of a General Purpose PCB for Basic Circuit                            | 02    |
| 2          | Design                                                                           | Implementation of Single sided Glass epoxy PCB for<br>an Electronic Circuit. | 02    |
| 3          | Design                                                                           | Implementation of both sided Glass epoxy PCB for an Electronic Circuit.      | 02    |
| 4          | Design                                                                           | Implementation of multi-layered PCBs for an Electronic Circuit.              | 02    |
| 5          | Advanced                                                                         | Implementation of PCB with SMD Components                                    | 02    |
| 6          | Advanced                                                                         | Implementation of Both sided PCB Using PTH (Design of SIW)                   | 02    |
| 7          | Basic Design                                                                     | Mini-Project -1                                                              | 02    |
| 8          | Advanced Design                                                                  | Mini-Project -2                                                              | 02    |

**Software Requirements:** EAGL/Ki-CAD/ ORCAD/Express-PCB/Altium/Proetis/ Hardware Requirements: PCB Board, PCB Lab setup, SMD and PTH Setup.

#### **Theory Assessment:**

#### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

#### **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Laboratory Assessment:

**Termwork Assessment:** Term work should consist of 10 experiments. Journal must include at least 2 assignments on content of theory and practical of "Java Programming". The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work. Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments: 05-marks)

**Oral/Viva Assessment**: Practical & oral exam to be conducted by Internal & External examiners. Practical execution (10 marks) & Oral (15 marks).

#### **Text Books:**

- 1. Simon Monk, Make your own PCBs with EAGLE: From Schematic Designs to Finished Boards, 1<sup>st</sup> Edition, McGraw Hill Education.
- 2. P. Horowitz and W. Hill, The Art of Electronics, 3<sup>rd</sup> Edition, Cambridge University Press.
- 3. Henry W. Ott, "Electromagnetic Compatibility Engineering", A John Wiley and Sons, Inc. Publication.
- Matthew Scarpino, Designing Circuit Boards with EAGLE: Make High Quality PCBs at Low Cost, 1<sup>st</sup> Edition, Prentice Hall.Archambeault and Drewniak James, PCB Design for Real World EMI Control, Springer Publication

| Course Code | Course Name      | Credits |
|-------------|------------------|---------|
| ET 391      | Mini Project III | 2       |

# **Course Objectives:**

- 1. To develop background knowledge Embedded Systems.
- 2. To understand the design of embedded systems.
- 3. To choose proper microcontroller for Embedded systems
- 4. To understand use of wireless sensors/communications with Embedded systems
- 5. To understand communication techniques.
- 6. To write programs for embedded systems and real time operating systems /IoT

# Course Outcomes: After successful completion of the course, the student will be able to

- 1. Understand the embedded systems with design metrics.
- 2. Understand microcontrollers and programming in Embedded C.
- 3. Implementation of Embedded systems with different sensors.
- 4. Implementation of Embedded systems with different communication protocols.
- 5. Anayze concepts of Real time operating systems.
- 6. Design embedded system applications using sensors, peripherals and RTOS

# **Course Contents :**

Guidelines for mini project

Mini Project should be completely microcontroller based.

- a) Take specifications, using these specifications design projects.
- b) Select proper microcontroller board considering features and requirements of the project.
- c) Program it using Embedded C and perform verification of each module
- d) Test Functional Simulation and verify it using a simulation tool.
- e) Make hardware connection of peripherals with microcontroller board and execute the program.
- f) Troubleshoot if not get expected result

# **A: Execution of Project:**

Project group shall consist of not more than 4 students per group. Project Work should be carried out in the Design / Projects Laboratory.

Project designs ideas can be necessarily adapted from recent issues of electronic design Use of Hardware devices/components is mandatory.

Layout versus schematic verification is mandatory

Assembly of components and enclosure design is mandatory.

Students shall be motivated to publish a paper based on the work in Conferences / students competitions.

# **B: Selection of Project :**

The Project may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on Learning additional skills.

# C: Weekly Interaction of project team and project guide :

Week 1 & 2: Formation of groups, Finalization of Mini project & Distribution of work. Week 3 & 4: PCB artwork design using an appropriate EDA tool, Simulation.

Week 5 to 8: PCB manufacturing through vendor/at lab, Hardware assembly, programming (if required) Testing, Enclosure Design, Fabrication etc

Week 9 & 10: Testing of final product, Preparation, Checking & Correcting of the Draft Copy of Report Week 11 & 12: Demonstration and Group presentations.

Log book for all these activities shall be maintained and shall be produced at the time of examination.

# **D.** Report writing : A project report with following contents shall be prepared:

Title Specifications Block diagram Circuit diagram Selection of components Calculations Simulation results

PCB artwork Layout versus schematic verification report Testing procedures Enclosure design Test results Conclusion

| Module<br>No | Module                                                      | Detailed Content                                                                                                                                                                                                                                                                           | CO<br>Mapping |
|--------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Ι            | Introduction                                                | Definition of Embedded System, Embedded Systems Vs<br>General Computing Systems, Classification, Major<br>Application Areas. Characteristics and Design Metric of<br>an embedded system.<br>Identification of Project Title                                                                | CO1           |
| Π            | Controller<br>boards and<br>Programmin<br>g –<br>Embedded C | ARM LPC 21XX (2148)/8051, STM32 boards and Texas<br>MSP 430 lunchbox/ Tiva C board and PIC/PSoc*<br>Comparison of C and embedded C, Data Types, Variable,<br>Storage Classes, Bit operation , Arrays, Strings, Structure<br>and unions, Classifier                                         | CO2           |
| Ш            | Interfacing<br>Sensors and<br>peripherals                   | Sensors and Signal Conditioning Circuits amplifiers<br>/attenuators /filters /comparators/ADC and DAC) ,<br>Interfacing with GLCD/TFT display , Relays and Drivers<br>for interfacing Motors (DC and stepper )<br>Interfacing with BLDC motors and drivers, USB/HDMI<br>camera interfacing | CO3           |
| IV           | Communicat<br>ion in<br>Embedded C                          | Serial communication, CAN bus, I2C, MOD bus, SPI<br>Interfacing with Wi-Fi, Bluetooth ,ZigBee, LoRa, RFID<br>and putting data on IoT<br>Interfacing with GSM module , GPS module, SD card                                                                                                  | CO4           |
| V            | Real Time<br>Operating<br>Systems                           | Operating system basics, Types of OS, Tasks, process,<br>Threads Multiprocessing and ,Multitasking, Task<br>scheduling,                                                                                                                                                                    | CO5           |
| VI           | Cloud/Web<br>server                                         | Implementation on web server, Thingspeak, AWS cloud platform for IoT based programming and modeling                                                                                                                                                                                        | CO6           |

# **Guidelines for Assessment of Mini Project:**

**Term Work (25 Marks) :-** On demonstration in front of an internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed. The review/ progress monitoring committee shall be constituted by the head of departments of each .

Back to Scheme

| Course Code | Course Name                     | Credits |
|-------------|---------------------------------|---------|
| ET 309      | Wireless & Mobile communication | 03      |

Computer Communication and Network

# **Course Objectives:**

- 1. To get familiar with the basics of wireless systems.
- 2. To understand various aspects of Mobile radio propagation.
- 3. To study various emerging technologies like Bluetooth, Zigbee, Wi- fi, WiMax etc.
- 4. To explore details of UWB.
- 5. To study advanced technologies used in Wireless communication.
- 6. To discuss the introduction of 5G technology.

# **Course Outcomes:**

Students will be able to:

- 1. Get familiar with the basics of wireless systems.
- 2. Understand various aspects of Mobile radio propagation.
- 3. Study various emerging technologies like Bluetooth, Zigbee, Wi- fi, WiMax etc..
- 4. Explore details of UWB.
- 5. Study advanced technologies used in Wireless communication.
- 6. Discuss introduction of 5G technology

| Sr. | Module                                  | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                              | Hours | СО      |
|-----|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|
| No. |                                         |                                                                                                                                                                                                                                                                                                                                                                                                               |       | Mapping |
| Ι   | Introduction to<br>Wireless<br>Networks | Infrastructure of Wireless Networks , Wireless<br>communication systems, Applications of<br>wireless communication systems, Types of<br>wireless communication systems, trends in<br>mobile communication systems.                                                                                                                                                                                            | 06    | CO1     |
| Π   | Mobile Radio<br>Propagation             | Large scale fading: Free space propagation<br>model, the three basic propagation mechanisms,<br>reflection, ground reflection (two-ray) model,<br>diffraction, scattering, practical Link budget<br>design using path loss models<br>Small scale fading: Small scale multipath<br>propagation, parameters of mobile multipath<br>channels, types of small-scale fading, Rayleigh<br>and Ricean distributions. | 08    | CO2     |
| III | Emerging<br>wireless<br>technologies    | Bluetooth, ZigBee, WiMax, Wi-fi, Ad-hoc<br>wireless networks, Wireless sensor networks,<br>UWB                                                                                                                                                                                                                                                                                                                | 08    | CO3     |
| IV  | Wireless Local<br>Area Networks         | Introduction, WLAN equipment, topologies and<br>technologies, WLAN applications and existing<br>basic service set, WLAN security and power<br>management, WLAN main features of IEEE<br>802.11a,b,I and n.                                                                                                                                                                                                    | 06    | CO4     |

# **Theory Syllabus:**

| V  | Advanced<br>technologies in<br>Wireless<br>Communication | Mobile Machine to Machine communication,<br>Mobile traffic management, cooperative<br>communication                                                          | 06 | CO5 |
|----|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| VI | Introduction to<br>5G                                    | Salient features of 5G, 5G technology, 5G<br>Architecture, Advantages and disadvantages,<br>Applications, 5G Advancements, 5G<br>Challenges, 5G future scope | 06 | CO6 |

# **Theory Assessment:**

# **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# **Textbooks:**

- 1. Vijay K. Garg, "Wireless Communication and Networking", Morgan Kaufmann Series in Networking—Elsevier
- 2. KE- LIN DU & M. N. S. Swamy, —Wireless Communication Systems, Cambridge University Press India Pvt. Ltd
- 3. Dr. Sunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri, —Wireless & Mobile Networks: Concepts and Protocols Wiley India
- 4. Theodore S. Rappaport "wireless communications principles and practice", PEARSON Second edition.

#### **References:**

- 1. T L Singal "wireless communications", Mc Graw Hill Education
- 2. Fundamentals of 5G Mobile Networks: Jonathan Rodriguez (Ist Edition), Wiley Publication
- 3. Carlos de Morais Cordeiro, Dharma Prakash Agrawal, —AD HOC & Sensor Networks Theory & Applications , Cambridge University Press India Pvt. Ltd

| Course Code | Course Name             | Credits |
|-------------|-------------------------|---------|
| ET 310      | Antenna theory & Design | 3       |

Electromagnetics and wave theory Transmission Line

#### **Course Objectives**:

- 1. Understanding of antenna fundamentals.
- 2. Ability to design, and analyze the performance of wire antennas.
- 3. Ability to design, and analyze the performance of antenna arrays.
- 4. Ability to design, and analyze aperture antennas and patch antennas.
- 5. Ability to measure antenna parameters
- 6. Understand the design constraints of MIMO antenna system

# **Course Outcomes:**

On completion of this course, the students will be able to

- 1. Explain basic antenna parameters and the fundamentals of antenna radiations.
- 2. Design, analyze and classify various wire antennas
- 3. Design and analyze antenna arrays
- 4. Understand fundamentals of aperture and patch antenna design and its applications.
- 5. Explain the measurement techniques of various antenna performance parameters.
- 6. Understand the fundamentals of MIMO antenna system and relate it with SISO antenna system.

| Sr.<br>No. | Module                  | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hours | CO<br>Mapping |
|------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Antenna<br>Fundamentals | <ul> <li>1.1 Introduction, Radiation Mechanism, basic antenna parameters, Radiation pattern, radiation power density, radiation intensity, Beamwidth, directivity, Antenna efficiency, Gain, beam efficiency, bandwidth, polarization, input impedance, antenna effective length and apertures. Antenna radiation efficiency, FRIIS transmission equation.</li> <li>1.2 Basic concepts of Maxwell's equation, vector potential, wave equation, near field and far field radiation. (No derivation)</li> </ul>                                                 | 06    | 01            |
| Ш          | Wire<br>Antennas        | <ul> <li>2.1 Infinitesimal dipole, radiation fields-near field, far field, radiation resistance, directivity of small dipole, finite length dipole, half wavelength dipole, Monopole antenna, Folded dipole. Design of dipole and monopole antenna.(No derivation)</li> <li>2.2 Loop Antenna: Small circular loop, Large loop, comparison of small loop with short dipole, Ferrite loop, radiation patterns and their application.</li> <li>2.3 Helical Antennas: Axial mode and normal mode antenna, Circular polarization using Helical Antenna.</li> </ul> | 10    | 02            |

#### **Theory Syllabus:**

| ш  | Arrays                                        | <ul> <li>3.1 Linear arrays, Array of two isotropic point sources, linear arrays of N elements, principle of pattern multiplication applicable to non-isotropic sources, broadside and End-fire Array, Increased Directivity end fire array, Calculations of Directivity, Beam width, Maxima and null directions for N-element Array.</li> <li>3.2 Introduction to planar and circular arrays .</li> <li>3.3 Design of Yagi antenna and Log Periodic antenna.</li> </ul> | 8 | 03 |
|----|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| IV | Aperture<br>Antennas and<br>patch<br>Antennas | <ul> <li>4.1 Horn Antennas :E-Plane Sectoral Horn, H-Plane Sectoral Horn, Pyramidal Horn, Conical Horn</li> <li>4.2 Reflector Antennas: Introduction, Plane Reflector, Corner Reflector, Parabolic Reflector-feeding techniques.</li> <li>4.3 Microstrip antenna (MSA): Introduction, Feeding Techniques, Design of regular Shape MSAs (Rectangular, Circular)</li> </ul>                                                                                               | 8 | 04 |
| V  | Antenna<br>Measurements                       | 5.1 Measurement of Antenna parameters: Radiation<br>Pattern, Gain (Two and Three antenna method),<br>Polarization.                                                                                                                                                                                                                                                                                                                                                      | 3 | 05 |
| VI | 5G antennas                                   | <ul> <li>6.1 : Introduction to MIMO antenna system (SISO, SIMO, MISO, MIMO )</li> <li>6.2 Performance Parameters of MIMO antenna (R.L, Isolation/mutual coupling,)</li> </ul>                                                                                                                                                                                                                                                                                           | 4 | 06 |

# Theory Assessment:

**Internal Assessment for 40 marks:** Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# **Text Books**

- 1. C. A. Balanis, Antenna Theory: Analysis and Design (3rd eds.), John Wiley & Sons, Hoboken, NJ, 2005.
- 2. J. D. Kraus, R. J. Marhefka, A.S. Khan Antennas & Wave Propagation, McGraw Hill Publications, 4th Edition, 2011
- 3. G. Kumar, K. P. Ray, Broadband Microstrip Antenna, Artech House, 2002.

# **References:**

- 1. Printed MIMO antenna by Mohammed Sharawi
- 2. Stutzman, Theile, Antenna Theory and Design, John Wiley and Sons, 3rd Edition
- 3. R. E. Collin, —Antennas and Radio Wave Propagation, International Student Edition, McGraw Hill.

| Course Code | Course Name  | Credits |
|-------------|--------------|---------|
| ET 311      | WM & ATD Lab | 01      |

#### Lab Prerequisite:

- 1. Electromagnetics and wave theory.
- 2. Transmission line

# Lab Objectives: Six Course Objectives

- L1. Ability to design and analyze the performance of wire antennas and its applications.
- L2. Ability to design and analyze the performance of microstrip antennas and its applications.
- L3. Ability to measure the performance parameters of reflector/ array/ Yagi-Uda/ Log-periodic antenna
- L4. Ability to design and analyze the performance of various wireless systems like GSM CDMA and WCDMA in Matlab or Scilab
- L5. Ability to study and analyze various Systems like Zigbee and WSN in NS2 L6. Ability to study Path loss models

# Lab Outcomes: At the end of the course the student should be able to:

- 1. Estimate the impact of various parameters of wire antennas like wire diameter and its length on the radiation characteristics of the antenna.
- 2. Design microstrip antenna using simulation tools and estimate the effect of change in antenna dimensions on the radiation characteristics of the antenna.
- 3. Determine beamwidth, directivity and radiation pattern of a reflector/array Yagi-Uda/ Log-periodic antenna
- 4. Design and analyze the performance of various wireless systems like GSM CDMA and WCDMA in Matlab or Scilab.
- 5. Analyze various Systems like Zigbee and WSN in NS2
- 6. Determine various losses from Path loss models.

#### Laboratory Syllabus: (Minimum 8 experiment)

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/<br>Case<br>Study/<br>Seminar | Detailed Lab/Tutorial Description                                                       | LO<br>Mapping |
|------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------|
| 1          | Basic                                                                                     | To determine radiation pattern, beamwidth and F/B ratio of Dipole antenna               | LO1           |
| 2          | Basic                                                                                     | To determine radiation pattern, beamwidth, and F/B ratio of monopole antenna            | LO1           |
| 3          | Basic                                                                                     | To determine radiation pattern, beamwidth, and F/B ratio of array of two dipole antenna | LO1           |
| 4          | Basic                                                                                     | To determine radiation pattern, beamwidth, and F/B ratio of yagi-uda antenna            | LO1           |
| 5          | Basic                                                                                     | To determine radiation pattern, beamwidth, and F/B ratio of Log-periodic antenna        | LO1           |

| 6  | Basic   | To determine radiation pattern, beamwidth, and F/B ratio of reflector antenna                                                                                     | LO1 |
|----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7  | Design  | To design a dipole antenna and study the effect of variation<br>of wire diameter and length of wire on its performance<br>(using software simulation tool)        | LO2 |
| 8. | Design  | To design a Rectangular microstrip antenna and study the effect of variation in length and width of the patch on its performance.                                 | LO2 |
| 9. | Design  | To design a 2-element microstrip MIMO antenna system and<br>study the effect of spacing between antenna elements on the<br>radiation characteristics of antennas. | LO2 |
| 10 | Project | To design and fabricate a patch antenna and test its parameters.                                                                                                  | LO2 |
| 11 | Basic   | Study, discussion and installation of different network simulation tools such as NS2/NS3, Net stumbler, Wireshark etc.                                            | LO2 |
| 12 | Design  | Analysis of Zigbee Network to compute the energy efficiency of the network.                                                                                       | LO3 |
| 13 | Design  | Simulation of a simple wireless network (IEEE802.11)using NS2 or any other simulator.                                                                             | LO4 |
| 14 | Design  | Simulation of path loss model.                                                                                                                                    | LO3 |
| 15 | Basic   | Configuration of WLAN.                                                                                                                                            | LO4 |
| 16 | Basic   | Analysis of WiFi network to compute average end to end delay and packet delivery ratio.                                                                           | LO5 |
| 17 | Design  | Link budget analysis of a GSM Network using Scilab /<br>Matlab.                                                                                                   | LO4 |
| 18 | Design  | Simulation of Wireless Sensor Network (IEEE802.15.4)in NS2 or any other simulator.                                                                                | LO5 |
| 19 | Design  | Link budget analysis of a WCDMA Network using Scilab / Matlab.                                                                                                    | LO6 |

Software Requirements: CST Microwave studio(any simulation software) Hardware Requirements: Antenna trainer kit, SCILAB/MATLAB software, NS2

# Lab Assessments:

- 1. Teamwork Assessment: Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per —Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.
- 2. Oral/Viva Assessment: The practical and oral examination will be based on entire syllabus.

# **Text Books:**

- 1. C. A. Balanis, Antenna Theory: Analysis and Design (3rd eds.), John Wiley & Sons, Hoboken, NJ, 2005.
- 2. J. D. Kraus, R. J. Marhefka, A.S. Khan Antennas & Wave Propagation<sup>II</sup>, McGraw Hill Publications, 4th Edition, 2011
- 3. G. Kumar, K. P. Ray, Broadband Microstrip Antenna, Artech House, 2002.
- 4. Theodore S. Rappaport "wireless communications principles and practice", PEARSON Second edition.

# **References:**

- 1. Printed MIMO antenna by Mohammed Sharawi
- 2. Stutzman, Theile, Antenna Theory and Design, John Wiley and Sons, 3rd Edition
- 3. R. E. Collin, —Antennas and Radio Wave Propagation, International Cu., nt Edition, McGraw Hill
- 4. T L Singal "Wireless Communications", McGraw Hill Education
- 5. Fundamentals of 5G Mobile Networks: Jonathan Rodriguez ( st Ec ion), Wiley Publication
- 6. Carlos de Morais Cordeiro, Dharma Prakash Agrawal, —AD HOC : Ser or Networks Theory & Applications , Cambridge University Press India Pvt. Lto

| Course Code | Course Name          | Credits |
|-------------|----------------------|---------|
| ET 312      | <b>R</b> Programming | 1       |

# Lab Prerequisite:

Basic statistics.

# Lab Objectives:

- L1. To provide an overview of a new language R used for data science.
- L2. To introduce students to the R programming environment and related ecosystem and thus provide them with an in-demand skill-set, in both the research and business environments.
- L3. To introduce the extended R ecosystem of libraries and packages L4. To demonstrate usage of as standard Programming Language.
- L5. To familiarize students with how various statistics like mean median etc. can be collected for data exploration in R
- L6. To enable students to use R to conduct analytics on large real life datasets.

# Lab Outcomes:

LO 1: Install and use R for simple programming tasks.

LO 2. Extend the functionality of R by using add-on packages

**LO 3.** Extract data from files and other sources and perform various data manipulation tasks on them.

LO 4. Code statistical functions in R.

LO 5. Use R Graphics and Tables to visualize results of various statistical operations on data .

LO 6. Apply the knowledge of R gained to data Analytics for real life applications.

| Labor      | atory Syllabus                                                       |                                                                                                                                                                                                                                                                                                                                                                  |                   |
|------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Sr.<br>No. | Level 1. Basic 2. Design 3. Advanced 4. Project/ Case Study/ Seminar | Detailed Lab/Tutorial Description                                                                                                                                                                                                                                                                                                                                | LO<br>Mapping     |
| 1          | Basic                                                                | Introduction: Installing R on personal machines.<br>installing R and RStudio.<br>The basic functionality of R will be demonstrated, Variable<br>types in R. Numeric variables, strings and<br>factors.,Accessing the help system. Retrieving R<br>packages.,Basic data types and operations: numbers,<br>characters and composites.Data entry and exporting data | LO1<br>LO2<br>LO3 |
| 2          | Basic                                                                | <b>Data structures</b> :<br>vectors, matrices, lists and data frames.                                                                                                                                                                                                                                                                                            | LO1<br>LO3        |
| 3          | Basic/Design                                                         | R as a programming language:Grouping, loops and<br>conditional execution, Functions<br>Exploratory data analysisRange, summary, mean,<br>variance, median, standard deviation, histogram, box plot,<br>scatterplot                                                                                                                                               | LO1<br>LO 4       |
| 4          | Design                                                               | Graphics in R<br>Graphics and tables Working with larger datasets<br>Introduction to ggplot2 graphics                                                                                                                                                                                                                                                            | LO3               |

# Laboratory Syllabus

| 5 | Design/  | Regression and correlation                                                                                                                                                                                                                         |          |
|---|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|   | Advanced | Simple regression and correlation,Multiple regression ,Tabular data and analysis of Categorical data                                                                                                                                               | LO4      |
| 6 | Project  | <b>R for Data Science (Mini Project)</b> Implementing a mini<br>project using any data mining or big data analytics<br>algorithm in R Extracting data from a large<br>Dataset,Exploratory analysis,Visualizations and<br>interpretation of results | LO5, LO6 |

# Laboratory Assessment:

# Term Work:

Term Work shall consist of experiment on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

# End Semester Practical/Oral Examination:

Pair of Internal and External Examiner should conduct practical/viva based on contents. Distribution of marks for practical/viva examination shall be as follows: Practical Examination: 15 Marks Oral Examination: 10 Marks

# **Text Books:**

- 1. URL: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf (Online Resources)
- 2. R Cookbook Paperback 2011 by Teetor Paul O Reilly Publications
- 3. Beginning R: The Statistical Programming Language by Dr. Mark Gardener, Wiley Publications
- 4. R Programming For Dummies by Joris Meys Andrie de Vries, Wiley Publications

# **References:**

- 1. Hands-On Programming with R by Grolemund, O Reilly Publications
- 2. R for Everyone: Advanced Analytics and Graphics, 1e by Lander, Pearson Ltd.
- 3. R for Data Science Learning Dan Toomey December 2014 Packt

| Course Code | Course Name                    | Credits |
|-------------|--------------------------------|---------|
| ET 313      | <b>Robotics and Automation</b> | 4       |

IoT Basics & Smart Sensors, Applied Mathematics.

# Course Objectives: Students will try:

- 1. To introduce the students to different types of Robots and understand the fundamentals of robotics.
- 2. To provide in depth knowledge of Direct Kinematics & Inverse Kinematics.
- 3. To impart skills for analysis of Velocity Kinematics and Dynamics.
- 4. To familiarize students with Trajectory planning of robots and robot vision.
- 5. To familiarize students with task planning of robots and industrial automation.
- 6. To train the students to analyze industrial automation and build automated systems.

Course Outcomes: Students will be able to:

- 1. Understand the basic concepts of robotics.
- 2. Perform the kinematic analysis of robots.
- 3. Analyze Velocity Kinematics and Dynamics.
- 4. Perform trajectory planning of robots & describe importance of visionary system in robotic manipulators
- 5. Perform task planning of robots and design industrial automation systems.
- 6. Analyze and build industrial automation systems

| Theory | Syllabus |
|--------|----------|
|--------|----------|

| Sr.<br>No. | Module                               | Detailed Content                                                                                                                                                                                                                                                                      | Hours | CO<br>Mapping |
|------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Fundamentals of Robotics             | Robot Classification, Robot Components, Robot<br>Specification, Joints, Coordinates, Coordinate<br>frames, Workspace, Languages, Applications.                                                                                                                                        | 06    | CO 1          |
| Π          | Kinematics of<br>Robots              | Homogeneous transformation matrices, Inverse<br>transformation matrices, Forward and inverse<br>kinematic equations – position and orientation<br>Denavit-Hartenberg representation of forward<br>kinematics, Forward and inverse kinematic<br>solutions of three and four axis robot | 08    | CO2           |
| Ш          | Velocity<br>Kinematics &<br>Dynamics | Differential motions and velocities: Differential<br>relationship, Jacobian, Differential motion of a<br>frame and robot, Inverse Jacobian, Singularities.<br>Dynamic Analysis of Forces : Lagrangian<br>mechanics, Newton Euler formulation, Dynamic<br>equations of two axis robot  | 08    | CO3           |
| IV         | Trajectory planning &                | Basics of Trajectory planning , Joint-space<br>trajectory planning, Cartesian-space trajectories,                                                                                                                                                                                     | 06    | CO4           |

|    | Robot Vision                                                                 | Image representation, Template matching,<br>Polyhedral objects, Shape analysis, Segmentation,<br>Iterative processing, Perspective transform,<br>Camera Calibration                                                                                                                                                                                                                                                                                           |    |     |
|----|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| V  | Task Planning<br>&<br>Fundamental<br>concepts of<br>Industrial<br>Automation | <ul> <li>Task level programming, Uncertainty,</li> <li>Configuration Space, Gross motion Planning;</li> <li>Grasp planning, Fine-motion Planning, Simulation</li> <li>of Planer motion, Source and goal scenes, Task</li> <li>planner simulation.</li> <li>Concepts in manufacturing and automation,</li> <li>definition of automation, reasons for automating.</li> <li>Types of production automation strategies, levels</li> <li>of automation.</li> </ul> | 06 | CO5 |
| VI | Transfer lines<br>and automated<br>assembly                                  | General terminology and analysis, analysis of<br>transfer lines without storage, partial automation.<br>Automated flow lines with storage buffers.<br>Automated assembly-design types of automated<br>assembly systems, part feeding devices, analysis<br>of multi-station assembly machines. AS/RS,<br>RFID system, AGVs, Flow line balancing.                                                                                                               | 06 | CO6 |

# **List of Experiment:**

- Suggested List of experiments
- Forward kinematics
- Inverse kinematic
- Dynamic analysis
- Joint-space trajectory
- Cartesian-space trajectory
- Template matching
- Iterative processing Segmentation

# **Software Requirements:**

MATLAB/Scilab

#### **Theory Assessment:**

**Internal Assessment for 40 marks:** Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# Laboratory Assessment:

#### Term work for 25 marks:

1. At least eight experiments covering the whole syllabus, duly recorded and graded. The experiments should be students' centric and attempts should be made to make experiments more meaningful, interesting and innovative.

- 2. Two assignments to be included covering at least 60% of the syllabus.
- 3. The final certification and acceptance of term work ensures satisfactory performance of Laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.

# **End Semester Practical/Oral Examination:**

Pair of Internal and External Examiner should conduct practical/viva based on contents. Distribution of marks for practical/viva examination shall be as follows:

Practical Examination: 15 Marks

Oral Examination: 10 Marks

# **Text Books:**

- 1. Robert Shilling, "Fundamentals of Robotics Analysis and control", Prentice Hall of India, 2009
- 2. Saeed Benjamin Niku, "Introduction to Robotics–Analysis,Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011

#### **References:**

- 1. John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- 2. Mark W. Spong , Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control ", Wiley India Pvt. Ltd., 2006
- 3. Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications", McGraw Hill, New York, 2008

| Course Code | Course Name               | Credits |
|-------------|---------------------------|---------|
| ET 314      | Electronic Product Design | 04      |

Electromagnetics Engineering, Antenna, Microwave Engineering, Transmission lines, Electronic Devices and Systems, Knowledge of basic electronic components

#### **Course Objectives: Six**

- 1. Understand the fundamentals of Product Design
- 2. Understand market needs and generate innovative ideas for product development
- 3. Understand the sources of EMI that may affect the performance of the product
- 4. Understand various techniques of making the product compatible to the electromagnetic environment
- 5. Understand basic rules of PCB design and system integration for prototyping
- 6. Understand the debugging techniques and testing of the prototype

# **Course Outcomes:**

- 1. Describe the fundamentals of Product design
- 2. Identify the innovative ideas for product development
- 3. Identify various sources of EMI affecting system performance
- 4. Identify and describe the techniques of electromagnetic compatibility
- 5. Describe design considerations of printed circuit board
- 6. Describe the procedure of debugging and testing of the prototype

| Sr.<br>No. | Module                            | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                  | Hours | CO<br>Mapping |
|------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Introduction to<br>Product Design | Introduction, Product Requirements and<br>Specifications, Product Architecture, packaging,<br>case studies of products in markets, Disassembling<br>existing Product(s) and understanding relationship<br>of components with each other, Case studies of<br>product failures                                                                                                                      | 09    | CO1           |
| II         | Ideation                          | Generation of ideas, Funnelling of ideas, Short-<br>listing of ideas for product(s) as an individual or a<br>group of individuals, Sketching of products, Market<br>research for need, competitions, scale and cost,<br>Initial specifications of products, Selection of<br>circuit and components, Identification<br>of suitable simulation software, Prototype Design in<br>simulation software | 10    | CO2           |

| III | Electromagnetic   | Introduction. Natural and Nuclear Sources of EMI,  | 10 | CO3      |
|-----|-------------------|----------------------------------------------------|----|----------|
| 111 | Interference      | Intrinsic sources of noise, EMI from Apparatus and | 10 | 005      |
|     | (EMI)             | Circuits. Quantification Of Communication System   |    |          |
|     |                   | EMI, Electrostatic Discharge (ESD), Elements of    |    |          |
|     |                   | Interference, Including Antennas, Transmitters,    |    |          |
|     |                   | Receivers and Propagation. Electronic Equipment    |    |          |
|     |                   | And System EMI Concepts. Examples Of EMI           |    |          |
|     |                   | Coupling Modes.                                    |    |          |
|     |                   | Equipment Emissions And Susceptibilities- Types    |    |          |
|     |                   | of coupling:                                       |    |          |
|     |                   | Common-Mode Coupling, Differential-Mode            |    |          |
|     |                   | Coupling, and Coupling Reduction Techniques.       |    |          |
|     |                   | Other Coupling mechanisms: Power Supplies And      |    |          |
|     |                   | Victim Amplifiers                                  |    |          |
| IV  | Electromagnetic   | Grounding, Shielding, Filtering, Bonding, EMC      | 08 | CO4      |
|     | Compatibility     | Specifications, EMC Regulations / Standards and    |    |          |
|     |                   | Measurements                                       |    |          |
| V   | PCB Layout        | Introduction to PCB layout making software's,      | 09 | CO5      |
|     | Considerations    | General PCB Layout Considerations: Partitioning,   |    |          |
|     | and Prototyping   | Keep Out Zones, Critical Signals, System Clocks,   |    |          |
|     |                   | PCB-to-Chassis Ground Connection, Return Path      |    |          |
|     |                   | Discontinuities                                    |    |          |
|     |                   | PCB Layer Stackup: One- and Two-Layer Boards,      |    |          |
|     |                   | Multilayer Boards, General PCB Design Procedure,   |    |          |
|     |                   | component mounting and System integration          |    |          |
| VI  | Prototype         | Steps of debugging, troubleshooting techniques,    | 08 | CO6      |
|     | Debugging,        | Inspection and testing of components, EMI-EMC      |    |          |
|     | 0 1               | testing, Enclosure design consideration, Product   |    |          |
|     | writing           | safety and liability issues, Product Documentation |    |          |
|     |                   | and report writing                                 |    |          |
|     |                   |                                                    |    |          |
| Lal | boratory Syllabus |                                                    |    | <b>,</b> |
| 1   |                   |                                                    | 1  |          |

| Labor      | atory Synabus                                                                         |                                                                       |       |
|------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------|
| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advance<br>4. Project/<br>Case Study<br>/Seminar | Detailed Lab/Tutorial Description                                     | Hours |
| 1          | Study                                                                                 | Case study of product failures                                        | 02    |
| 2          | Design                                                                                | Ideation and prototype design in simulation software                  | 02    |
| 3          | Advanced                                                                              | Measurement of conducted and radiated<br>Electromagnetic Interference | 02    |
| 4          | Design                                                                                | To study electromagnetic compatibility techniques.                    | 02    |
| 5          | Advanced                                                                              | Implementation of PCB prototype considering EMI-EMC issues.           | 02    |
| 6          | Advanced                                                                              | Enclosure design for the prototype                                    | 02    |
| 7          | Advanced                                                                              | Troubleshooting of the prototype.                                     | 02    |
| 8          | Basic                                                                                 | Preparation of product manual and launching of product.               | 02    |

# **Theory Assessment:**

# **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# Laboratory Assessment:

#### Term work Assessment:

At least 08 experiments covering the entire syllabus should be set to have well predefined inference and conclusion. The experiments should be students' centric and an attempt should be made, to frame experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work

#### **Oral/Viva Assessment:**

Practical and Oral exams will be based on the entire syllabus.

# Hardware Requirements:

- 1. CRO (Analog/ DSO),
- 2. Spectrum Analyzer (SA)
- 3. Vector network analyzer (VNA)
- 4. Basic electronic and electrical components and tools
- 5. SMD and PTH Setup.
- 6. PCB Lab setup

# Software Requirements:

- 1. EAGLE
- 2. Ki-CAD
- 3. ORCAD
- 4. Express-PCB

- 5. Altium
- 6. Proetis
- 7. CST Microwave studio
- 8. Other open source simulators

# Text Books

- 1. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiely and Sons, 2005
- W. Prasad Kodali, "Engineering Electromagnetic Compatibility: Principles, Measurements, Technologies, and Computer Models", 2nd Edition, ISBN: 978-0-7803-4743-4, January 2001, Wiley-IEEE Press
- 3. David. A. Weston, "Electromagnetic Compatibility-principles and applications", Second Edition, Publisher: Marcel Dekker, Inc. 2001, ISBN 0-8247-8889-3
- 4. J. A. S. Angus, "Electronic Product Design", Chapman and Hall, 1996.
- 5. Eppinger, S., & Ulrich, K. "Product design and development", McGraw Hill Higher Education

# **References:**

- 1. Clayton R. Paul, "Electromagnetic Compatibility", John Wiley & Sons, 2nd Edition.
- 2. Roozenburg, N. F. and Eekels, J. "Product design: fundamentals and methods" Vol. 2, John Wilder & Song Inc. 1995
- John Wiley & Sons Inc. 1995.

| Course Code | Course Name              | Credits |
|-------------|--------------------------|---------|
| ET 315      | Data Processing & Coding | 4       |

# **Prerequisite:**

Electronics Communication System Digital Communication **Course Objectives:** 

### To teach the students

- 1. Lossy & Lossless compression techniques for Text.
- 2. Compression techniques for Audio signals.
- 3. Lossy & Lossless compression techniques for Image & Video.
- 4. Goals and design principles for cryptography and common structures of secret key primitives such as block and stream ciphers and message authentication codes.
- 5. Basic key management techniques in both secret key and public key cryptography.
- 6. Network and Web Security.

### **Course Outcomes:**

After successful completion of the course student will be able to

- 1. Define compression; understand compression as an example of representation
- 2. Implement text, audio and video compression techniques.
- 3. Translate the most common file formats for image, sound and video.
- 4. Understand basic principles of cryptography and general cryptanalysis & be acquainted with the concepts of symmetric encryption and authentication.
- 5. Compare & Contrast Symmetric and Asymmetric Key Cryptography schemes.
- 6. Compose, build and analyze simple cryptographic solutions

# Theory Syllabus

| Sr.<br>No. | Module                          | Detailed Content                                                                                                                                                                                                                                                                                                                                                           | Hours | CO<br>Mapping |
|------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| I          | Text<br>Compression             | <ol> <li>Introduction to Information theory: Entropy,<br/>Information Value, Data Redundancy.</li> <li>Statistical Methods: Shannon-Fano<br/>Algorithm, Huffman Algorithm, Adaptive<br/>Huffman Coding.</li> <li>Statistical Methods: Arithmetic Coding<br/>(Encoding, Decoding, Adaptive Coding).</li> <li>Dictionary Methods: LZ77, LZ78, LZW<br/>Algorithms.</li> </ol> | 8     | CO1,CO2       |
| Π          | Audio<br>Compression            | Sound, Digital Audio, $\mu$ -Law and A-Law Companding, MPEG – $\frac{1}{2}$ Audio Layer (MP3 Audio Format)                                                                                                                                                                                                                                                                 | 5     | CO2,CO3       |
| III        | Image &<br>Video<br>Compression | <ol> <li>Image Compression: Discrete Cosine</li> <li>Transform, JPEG. Differential Lossless<br/>Compression, DPCM</li> <li>Wavelet Methods: Discrete Wavelet<br/>Transform, JPEG 2000.</li> </ol>                                                                                                                                                                          | 5     | CO2,CO3       |

| IV | Data Security                                             | <ol> <li>Video Compression: Analog Video, Digital<br/>Video, Motion Compensation, Temporal<br/>and Spatial Prediction. MPEG and H.264.</li> <li>Security Goals, Cryptographic Attacks,<br/>Techniques</li> <li>Symmetric Key: Substitution Cipher,<br/>Transposition Cipher, Stream and Block<br/>Cipher</li> <li>DES, AES</li> </ol>                                                | 8 | CO4 |
|----|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| V  | Number<br>Theory and<br>Asymmetric<br>Key<br>Cryptography | <ol> <li>Primes, factorization, Fermat's little<br/>theorem, Euler's theorem, and extended<br/>Euclidean algorithm</li> <li>RSA, attacks on RSA, Diffie Hellman key<br/>exchange, key management, and basics of<br/>elliptical curve cryptography</li> <li>Message integrity, message authentication,<br/>MAC, hash function, H MAC, and digital<br/>signature algorithm.</li> </ol> | 8 | CO5 |
| VI | System<br>Security                                        | Malware, Intruders, Intrusion detection<br>system, firewall design, antivirus techniques,<br>digital Immune systems, biometric<br>authentication, and ethical hacking.                                                                                                                                                                                                               | 5 | CO6 |

# Lab Syllabus

Lab Prerequisite: Knowledge of MATLAB/SCILAB

| Sr.<br>No. | Level<br>1.Basic<br>2.Design<br>3.Advanced<br>4.Project/Case<br>Study/<br>Seminar | Detailed Lab/Tutorial Description                  | Hours |
|------------|-----------------------------------------------------------------------------------|----------------------------------------------------|-------|
| 1          | 2                                                                                 | To implement Huffman Coding                        | 02    |
| 2          | 2                                                                                 | To implement Arithmetic coding                     | 02    |
| 3          | 2                                                                                 | To implement LZ77/78 Coding                        | 02    |
| 4          | 2                                                                                 | To implement LZW Coding                            | 02    |
| 5          | 3                                                                                 | To implement one dimension & two-dimensional DCT   | 02    |
| 6          | 2                                                                                 | To implement Chinese Remainder Theorem             | 02    |
| 7          | 2                                                                                 | To implement Caesar Cipher Algorithm               | 02    |
| 8          | 2                                                                                 | To implement Transposition cipher                  | 02    |
| 9          | 3                                                                                 | To implement Diffie Hellman key exchange Algorithm | 02    |
| 10         | 3                                                                                 | To implement RSA algorithm                         | 02    |

# **Software Requirements:** MATLAB/SCILAB **Hardware Requirements:**NIL Theory Assessment:

### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

### Laboratory Assessment:

#### Term Work: **25 Marks** End Semester Practical/Oral Examination **25 marks**:

# **Text Books:**

- 1. Mark Nelson, Jean-Loup Gailly, The Data Compression Book, 2nd edition, BPB Publications
- 2. Khalid Sayood, Introduction to Data Compression, 2nd Edition Morgan Kaufmann.
- 3. William Stallings, -Cryptography and Network Security Principles and Practices 5th
- 4. Edition, Pearson Education.
- 5. Behrouz A. Forouzan, —Cryptography and Network Security, Tata McGraw-Hill.

# **References:**

- 1. David Salomon, —Data Compression: The Complete Reference, Springer.
- 2. Matt Bishop, —Computer Security Art and Science, Addison-Wesley.

| Course Code | Course Name            | Credits |
|-------------|------------------------|---------|
| ET 316      | TV & Video Engineering | 04      |

### **Prerequisite:**

Electronic Communication System

### **Course Objectives:**

- 1. To understand basic concepts of TV system
- 2. To learn the importance of the digitization in Television Engineering
- 3. To become well conversant with new development in video engineering.
- 4. To understand compression techniques
- 5. To introduce to advanced systems and dvb standards
- 6. Describe the modern display devices like.

# **Course Outcomes:**

- 1. Understand overview of TV system.
- 2. Able to understand NTSC and PAL Television system and concept of Colour theory in Colour TV.
- 3. Able to recollect digitization in television and compression technique.
- 4. Understand details of Know about different dvb standards.
- 5. Understand advanced digital systems
- 6. Understand various display device

| Sr.<br>No. | Module                                     | Detailed Content                                                                                                                                                                                                                                                                                                                                 | Hours | CO<br>Mapping |
|------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| I          | Fundamental<br>s of TV<br>system           | 1.1ElementsofTVsystem,Transmitter and receiver-block diagramapproach, interlaced scanning, compositevideosignal,VSBtransmissionandreception1.2CameraTubes:Vidicon,ImageOrthicon                                                                                                                                                                  | 8     | CO1           |
| П          | Colour TV<br>Standards                     | <ul> <li>2.1 Colour fundamentals, mixing of colors, color perception, chromaticity diagram, Color TV systems</li> <li>2.2 NTSC, PAL systems, colour TV transmitter, colour TV receivers.</li> </ul>                                                                                                                                              | 8     | CO2           |
| III        | Fundamental<br>Concept of<br>Digital Video | <ul> <li>3.1 Introduction to Digital TV,<br/>Principle of Digital TV, Digital TV signals<br/>and parameters (Digitization, pixel array,<br/>scanning notation, viewing distance and<br/>angle, aspect ratio, frame rate and refresh<br/>rate.)</li> <li>3.2 Chroma subsampling:<br/>4:4:4,4:2:2,4:2:0,4:1:1 digital video<br/>formats</li> </ul> | 10    | CO3           |

### **Theory Syllabus:**

Department of Electronics and Telecommunication Engineering - Syllabus for Undergraduate Programme

|       |                                  | 3.3 Video compression standards:<br>MPEG2:DCT coding, codec structure.<br>Introduction to H.264/MPEG-4 AVC,<br>Introduction to H.265 Direct-to-home<br>TV(DTH)                                                                                                 |    |     |  |
|-------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| IV    | Digital Vide<br>Broadcasting     |                                                                                                                                                                                                                                                                | 6  | CO4 |  |
| V     | Advanced<br>Digital T<br>Systems | <ul> <li>5.1 MAC signal, D2-MAC/packet signal,</li> <li>MAC decoding and interfacing, advantages of MAC signal, HDTV, MUSE, Smart TV and its functions IP Audio and Video, IPTV systems, Mobile TV, Video transmission in 3G mobile System, Digital</li> </ul> | 10 | CO5 |  |
| V     | I Displays<br>Device             | 6.1LCD,LED6.2Chromecast                                                                                                                                                                                                                                        | 4  | CO6 |  |
| borat | ooratory Syllabus:               |                                                                                                                                                                                                                                                                |    |     |  |
|       | Level                            |                                                                                                                                                                                                                                                                |    |     |  |

# Laboratory Syllabus:

|     | Level       |                                                                                               |       |
|-----|-------------|-----------------------------------------------------------------------------------------------|-------|
| Sr. | 2. Design   |                                                                                               |       |
| No. | 3. Advanced | <b>Detailed Lab/Tutorial Description</b>                                                      | Hours |
|     | 4.Project/  | Detailed Dabi Fatorial Description                                                            | nours |
|     | Case        |                                                                                               |       |
|     | Study/      |                                                                                               |       |
|     | Seminar     |                                                                                               |       |
|     |             | To acquire the knowledge of the RF section and IF section of                                  | 0.0   |
| 1   | Basic       | the TV trainer kit and test faults in both sections.                                          | 02    |
| 2   | Basic       | To test various faults in the Horizontal & Vertical Oscillator section of the TV trainer kit. | 02    |
| 3   | Basic       | To understand and test faults in the Video and Chroma                                         | 02    |
|     |             | section of TV trainer kits.                                                                   | 02    |
| 4   | Basic       | Study block diagram and functioning of different sections of<br>wi-fi/ Smart LED Television   |       |
| 5   | Design      | Develop an algorithm to compress the image/video using morden compression methods.            | 02    |
| 6   | Advanced    | To Study the function of front panel control keys and remote control keys of smart LED TV.    | 02    |
| 7   | Advanced    | Study and measure voltage of the power supply section.                                        | 02    |
| 8   | Advanced    | To understand the LED interface section.                                                      | 02    |
| 9   | Advanced    | To acquire the knowledge of direct to home television system                                  | 02    |
| 10  | Advanced    | To study various waveform and important voltages level in                                     |       |
|     |             | DTH system                                                                                    | 02    |

# **Theory Assessment:**

### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# Lab Assessments::

- 1. **Termwork Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the **Laboratory session batch wise**". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempt to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorial and mini-projects (if included) are graded from time to time.
- 2. **Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

# **Text Books:**

- 1. Television and video Engineering, A. M. Dhake, Tata McGraw Hill Publication
- 2. Monochrome and colour Television by R.R.Gulati
- 3. R.G.Gupta, "Television and Video Engineering", Tata Mc Graw Hill publication.
- 4. Dhake A.M, "Television and Video Engineering", Tata McGraw Hill publication.
- 5. Keith Jack, "Video Demystified", 4e, Elsevier

### **References:**

- 1. Charles Poynton, "San Francisco, Digital video and HDTV, Algorithms And Interfaces," Morgan Kaufmann publishers, 2003.
- 2. Digital Television (Practical guide for Engineers) by Fischer

| Course Code | Course Name                       | Credits |
|-------------|-----------------------------------|---------|
| ET 317      | Database Management System (DBMS) | 04      |

# Prerequisite: Data Structure Course Objectives:

- 1. Understand the requirement of Database Management System
- 2. Develop entity relationship data model and its mapping to relational model
- 3. Learn relational algebra and Formulate SQL queries
- 4. Apply normalization techniques to normalize the database
- 5. Understand the concept of transaction, concurrency control and recovery techniques.
- 6. Understand the Data Storage and querying of DBMS

# **Course Outcomes:**

- 1. Recognize the need of database management system and understanding Data Models
- 2. Design ER and EER diagrams for real life applications and Construct relational models for the same.
- 3. Formulate SQL queries and design Database.
- 4. Apply the concept of normalization to relational database design.
- 5. Describe the concept of transaction, concurrency and recovery.
- 6. Describe Data Storage and querying of DBMS

# **Theory Syllabus:**

| Sr.<br>No. | Module                                                                                    | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hours | CO<br>Mapping |
|------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Introduction<br>to DBMS                                                                   | Characteristics of database , Database users ,<br>Advantages of DBMS , Data Models , Schemas and<br>Instances , Three schema Architecture and Data<br>Independence , Database Languages and Interfaces,<br>The Database System Environment , Centralized<br>and Client / Server Architecture for DBMS,<br>ORDBMS, OODBMS.                                                                                                                                                                                                                                                                                          | 4     | CO1           |
| П          | Entity- Relat<br>ionship<br>Model and<br>Relational<br>Model and<br>Relational<br>Algebra | Entity Types ,Entity Sets ,Attributes and Keys<br>;Relationship Types, Relationship sets , Roles and<br>structural Constraints; Design Issues; Entity<br>Relationship diagram; Weak entity sets; Extended E-<br>R features; Design of an E-R database schema;<br>Reduction of an E-R schema to tables. Relational<br>Model Concept of a relation; Relational Model<br>Constraints; Relational Database Schema, Entity<br>Integrity, Referential Integrity and foreign keys; the<br>relational algebra and extended relational-algebra<br>operations; Relational Database Design using ER-to<br>Relational Mapping. | 5     | CO2           |
| III        | Structured<br>Query<br>Language                                                           | DDL : Create, Modify, Alter, Drop, View definition,<br>etc.DML : SELECT, INSERT, DELETE, Update,<br>Nested Query, SQL with SET operations: Union,<br>Intersect, Except, etc, Aggregate Functions: Group<br>By, Having, SUM, etc, SQL with Logical<br>operations, Nested and Complex Queries, Join<br>Queries. DCL : GRANT, REVOKE, etc DBA level                                                                                                                                                                                                                                                                   | 10    | CO3           |

|    |                                                                    | query. Cursors and Triggers, Procedures and Functions                                                                                                                                                                                                                                                                                                                             |   |     |
|----|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| IV | Relational-<br>Database<br>Design                                  | First normal form; Pitfalls in relational-database<br>design ;Functional dependencies; Decomposition;<br>Desirable properties of decomposition; Boyce-<br>Codd normal form; 3rd and 4th normal form;<br>Mention of other normal forms; Overall database<br>design process.                                                                                                        | 6 | CO4 |
| V  | Transaction<br>Processing<br>Concurrency<br>& Database<br>Recovery | Transaction concept, Transaction states, ACID<br>properties, Transaction Control Commands,<br>Concurrent Executions, Serializability-Conflict and<br>View, Concurrency Control: Lock-based,<br>Timestamp-based protocols, Recovery System: Log<br>based recovery, Deadlock handling.                                                                                              | 8 | CO5 |
| VI | Data Storage<br>and<br>Querying                                    | File organization, Indexing and Hashing<br>Organization of records in files; Data dictionary<br>storage. Basic Concepts of Indexing ; Types of<br>Single Level Ordered Indices; Multilevel Indices<br>using B+ Tree Index Files; B- Tree Index Files;<br>Static Hashing; Dynamic Hashing; Index Definition<br>in SQL; Multiple-Key Access. Fundamentals of<br>Query Optimization. | 6 | CO6 |

# Laboratory Syllabus: Lab Prerequisite: Data Structures

| Laboratory Syllabus:<br>Lab Prerequisite: Data Structures |             |                                                              |       |  |
|-----------------------------------------------------------|-------------|--------------------------------------------------------------|-------|--|
|                                                           | Level       | <b>Detailed Lab/Tutorial Description</b>                     | Hours |  |
|                                                           | 1.Basic     |                                                              |       |  |
| Sr.                                                       | 2. Design   |                                                              |       |  |
| No.                                                       | 3. Advance  |                                                              |       |  |
|                                                           | 4. Project/ |                                                              |       |  |
|                                                           | Case Study/ |                                                              |       |  |
|                                                           | Seminar     |                                                              |       |  |
| 1                                                         | 1,2         | Identify the case study and detail statement of the problem. | 02    |  |
|                                                           |             | Design an Entity-Relationship(ER)/ Extended                  |       |  |
|                                                           |             | Entity-Relationship (EER) Model.                             |       |  |
| 2                                                         | 2           | Mapping ER/EER to Relational schema model.                   | 02    |  |
| 3                                                         | 3           | Create a database using Data Definition Language (DDL) and   | 02    |  |
|                                                           |             | apply integrity constraints for the specified System.        |       |  |
| 4                                                         | 3           | Apply DML Commands for the specified system.                 | 02    |  |
| 5                                                         | 3           | Perform Simple queries, string manipulation operations and   | 02    |  |
|                                                           |             | aggregate functions.                                         |       |  |
| 6                                                         | 3           | Implement Views and Join operations.                         | 02    |  |
| 7                                                         | 3           | Perform Nested and Complex queries                           | 02    |  |
| 8                                                         | 3           | Perform DCL and TCL commands.                                | 02    |  |
| 9                                                         | 3           | Implement function and trigger.                              | 02    |  |
| 10                                                        | 4           | Demonstrate Database connectivity                            | 02    |  |
| 11                                                        | 4           | Implementation and demonstration of Transaction and          | 02    |  |
|                                                           |             | Concurrency control techniques using locks.                  |       |  |

# Software Requirements: SQL server (Oracle/MySQL/PostGreSQL) Hardware Requirements: 2GB RA

# Theory Assessment:

### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

### **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# Lab Assessments:

- 1. Teamwork Assessment: Term work should consist of 10 experiments. Journal must include at least 2 assignments on content theory and practical of "Database Management System". The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments: 05-marks).
- **2. Oral/Viva Assessment**: Practical & oral exam to be conducted by Internal & External examiners. Practical execution (10 marks) & Oral (15 marks).

# **Text Books:**

- 1. Elmasri & Navathe, "Fundamentals of Database System", 7 th Edition, Addison Wesley Publication.(2015).
- 2. Abraham Silberschatz, Henry Korth, Sudarshan , "Database System Concepts", 6th Edition, (2010)
- 3. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, 3rdEdition, McGraw-Hill, (2002)

### **References:**

- 1. Michael Mannino, "Database design, Application Development and Administration", 4th Edn(2008)
- 2. Peter Rob and Coronel, "Database systems, Design, Implementation and Management", 5th Edition, Thomson Learning,2001
- 3. C. J. Date, "Introduction To Database Systems", Seventh Edition, Addison Wesley

# **Text Books (For Laboratory)**

- 1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6thEdition, McGraw Hill.
- 2. Elmasri and Navathe, Fundamentals of Database Systems, 5thEdition, Pearson Education.
- 3. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.

# **References (For Laboratory)**

- 1. Microsoft SQL Server Black Book By Patrick Dalton
- 2. https://www.w3schools.com/sql/ https://www.postgresqltutorial.com

| <b>Course Code</b> | Course Name                                 | Credits |
|--------------------|---------------------------------------------|---------|
| ET 318             | <b>Computer Communication &amp; Network</b> | 04      |

- 1. To develop an understanding of computer networking basics.
- 2. Describe how computer networks are organized with the concept of layered approach.
- 3. Analyze the contents in a given data link layer packet, based on the layer concept.
- 4. Describe what a classless addressing scheme is? Design logical sub-address blocks with a given address block.
- 5. Describe how routing protocols, transport layer and application layer protocols work.

# **Course Outcomes:** Six (Based on Bloom's Taxonomy)

- 1. Demonstrate the concepts of data communication at the physical layer and compare ISO OSI model with TCP/IP model.
- 2. Demonstrate the knowledge of networking protocols at the data link layer.
- 3. Design the network using IP addressing and subnetting / supernetting schemes.
- 4. Analyze various routing algorithms and protocols at the network layer.
- 5. Analyze transport layer protocols and application layer protocols.
- 6. Develop knowledge and skills necessary to gain employment as computer network engineer and network administrator.

### Prerequisite: Basic knowledge of Computer

#### **Theory Syllabus:**

| <u>neor</u> y | Syllabus:                                                                      |                                                                                                                                                                                                                         |       |               |
|---------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Sr.<br>No.    | Module                                                                         | Detailed Content                                                                                                                                                                                                        | Hours | CO<br>Mapping |
| I             | Introduction to<br>Computer<br>Network and<br>Physical Layer<br>Specifications | Overview of OSI Model, of TCP/IP Protocol<br>Suite, Applications of Computer<br>Networks,Software Primitives,<br>Transmission Media, Network devices,<br>Switching, Physical Layer Coding                               | 6     | CO1           |
| Π             | Framing and<br>Channel<br>Allocation, Error<br>Control                         | Bits stuffing, Byte Stuffing, Character<br>Coding, HDLC, PPP, CRC, Checksum,<br>Hamming Code, Overview ARQ, Dynamic<br>Channel<br>Allocation(CSMA/CD, CSMA/CA)                                                          | 7     | CO2           |
| Π             | IP addressing<br>(IP v4, IPv6)                                                 | Classful, classless addressing, Subnetting,<br>IPV4, IPV6, Migration from IPv4 to IPV6                                                                                                                                  | 6     | CO3,CO6       |
| IV            | Routing(interdom<br>ain, Intradoma<br>in),                                     | Types of Routing, Routing Algorithm:Distances Vector Routing, Link stateRouting Path vector Routing,                                                                                                                    | 5     | CO4,C06       |
| V             | TCP and UDP<br>services, Socket<br>Programming                                 | TCP header, 3-way connection<br>Establishment, TCP services: Error Control,<br>Flow control, Congestion Control, TCP state<br>transition diagram, TCP timers, UDP header,<br>Socket Programing,Client Server programing | 8     | CO5,CO6       |

| Γ | VI | HTTP,      | FTP, | Application Layer Services, HTTP, FTP, | 7 | CO5,CO6 |
|---|----|------------|------|----------------------------------------|---|---------|
|   |    | Mailing    |      | TFTP, SNMP, POP3 , IMAP4, DNS, DHCP    |   |         |
|   |    | Protocols, | DNS, |                                        |   |         |
|   |    | DHCP,      |      |                                        |   |         |

# Laboratory Syllabus:

|            | Level                                                                    |                                                                                                 |       |
|------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------|
| Sr.<br>No. | 1.Basic<br>2.Design<br>3.Advanced<br>4.Project/Case<br>Study/<br>Seminar | Detailed Lab/Tutorial Description                                                               | Hours |
| 1          | Basic                                                                    | To perform crimping and set up a LAN connection.                                                | 02    |
| 2          | Design                                                                   | To configure a network using Distance Vector Routing<br>Protocol-RIP using Cisco Packet Tracer. | 02    |
| 3          | Design                                                                   | Configure a network using Path Vector Routing Protocol- BGP using Cisco Packet Tracer           | 02    |
| 4          | Advanced                                                                 | To perform subnetting using Cisco Packet Tracer                                                 | 02    |
| 5          | Advanced                                                                 | To configure the DHCP server.                                                                   | 02    |
| 6          | Basic                                                                    | To study about the NS2 simulator in detail.                                                     | 02    |
| 7          | Advanced                                                                 | To Simulate and to study stop and Wait protocol using NS 2.1                                    | 02    |
| 8          | Advanced                                                                 | To Simulate Sliding Window protocol using NS 2.1                                                | 02    |
| 9          | Project                                                                  | Mini Project                                                                                    | 02    |

Software Requirements: Cisco Packet Tracer, NS2

Hardware Requirements: Network Devices: Routers, Switches, Crimping Tool

### **Theory Assessment:**

### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

### Lab Assessments:

1. Termwork Assessment: At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time. Based on the above scheme grading and term work assessment should be done.

2. Oral/Viva Assessment: The practical and oral examination will be based on the entire syllabus.

### **Textbooks:**

- 1. Computer Networks, Fifth Edition, Andrew S. Tanenbaum.
- 2. TCP/IP Protocol Suite, Tata McGraw Hill, Behrouz A. Forouzan

### **References:**

- 1. DATA AND COMPUTER COMMUNICATIONS Eighth Edition William Stallings
- 2. Computer Networking: A Top-Down Approach, 6th Edition. James Kurose. Keith W. Ross

| <b>Course Code</b> | Course Name      | Credits |
|--------------------|------------------|---------|
| IL 360             | Entrepreneurship | 3       |

- 1. To understand the basic concepts of entrepreneurship.
- 2. To understand the role of entrepreneurship in economic development
- 3. To understand the importance of opportunity recognition and internal and external analyses to the success of a business venture
- 4. To enable the learners to know the factors contributed in failure of the enterprise

# Course Outcomes: Learner will be able to

- 1. Analyse the business environment in order to identify business opportunities
- 2. Identify the elements of success of entrepreneurial ventures
- 3. Evaluate the effectiveness of different entrepreneurial strategies,
- 4. Interpret their own business plan

| Module | Detailed Contents                                                                                                                                                                                                                             | Hrs |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1      | Conceptual definition of entrepreneurs and entrepreneurship, Advantages and Disadvantages of Being an Entrepreneur , Entrepreneurial motivation, Entrepreneurial characteristics                                                              | 8   |
| 2      | Recognizing, assessment and Exploiting the Opportunity, Conducting<br>Internal and External Analyses, Determining the Feasibility of the Concept,<br>Selecting a Marketing Strategy                                                           | 6   |
| 3      | Entrepreneurial Business Types<br>A. Overview of Franchising and Their Advantages and Disadvantages<br>B. Overview of Buyouts & Their Advantages and Disadvantages<br>C. Overview of Family Businesses and Their Advantages and Disadvantages | 6   |
| 4      | The Overall Business Plan, Purpose of the Business Plan,Components ofthe Business Plan,Presentation of the Business Plan,Matching theBusiness Plan to the Needs of the Firm                                                                   | 6   |
| 5      | The Marketing Plan, Conducting a Market Analysis, Understanding the Target Market, Reaching the Target Market through Locale and Engagement                                                                                                   | 8   |
| 6      | Entrepreneurial failure, early stage failure, late stage failure                                                                                                                                                                              | 6   |

Assessment:

### **Internal Assessment: 40 marks**

- 1. Consisting of One Compulsory Class Tests of 40 Marks
- 2. Continuous evaluation : Test/Assignments /Quiz/Case studies/Seminar presentation of 40 Marks

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# **Reference Books:**

- 1. Fundamentals of Entrepreneurship by H. Nandan, PHI
- 2. Entrepreneurship by Robert Hisrich, Michael Peters, Dean Shepherd, Sabyasachi Sinha, Mc Graw Hill
- 3. Why startups fail: A new roadmap for entrepreneurial success by Tom Eisenmann

| Course Code | Course Name       | Credits |
|-------------|-------------------|---------|
| IL 361      | IPR and Patenting | 3       |

- 1. To introduce fundamental aspects of Intellectual property Rights to learner who are going to play a major role in development and management of innovative projects in industries.
- 2. To get acquaintance with Patent search, patent filing and copyright filing procedure and applications, and can make career as a patent or copyright attorney.
- 3. To make aware about current trends in IPR and Govt. steps in fostering IPR,

- 1. Understand the importance of IPR, types of Patent type and its importance in industries.
- 2. Able to search, draft and file the patent and copyright application to patent office.
- 3. Learn the recent trends of IPR and can open the way for the students to catch up Intellectual Property (IP) as a career option:
  - a) R&D IP Counsel in research organization
  - b) Government Jobs Patent Examiner
  - c) Private Jobs
  - d) Patent agent and Trademark agent.

| Module | Detail Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs. |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | <b>Overview of Intellectual Property:</b> Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India : Genesis and development – IPR in abroad - Major International Instruments concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention, 1967,the Patent Co-operation Treaty, 1970, the TRIPS Agreement, 1994 | 9    |
| 2      | <b>Patents:</b> Patents - Elements of Patentability: Novelty, Non-Obviousness (Inventive Steps), Industrial Application - Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board                                                                                                                                                                                                                                                         | 7    |
| 3      | <b>Copyright:</b> Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and licence of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights                                                                                                                                                                                                                                                       | 6    |
| 4      | <b>Trademark:</b> Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non-Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademark's registry and appellate board.                                                                                                                                                                                                                                                                     | 6    |
| 5      | <b>Patent Acts:</b> Section 21 of the Indian Patent Act, 1970 (and corresponding Rules and Forms) with specific focus on Definitions, Criteria of Patentability, Non-Patentable Subject Matters, Types of Applications, and Powers of Controllers. Section 25 - Section 66 of the Indian Patent Act, 1970 with                                                                                                                                                                                                                                                                                                                                | 9    |

|   | specific focus on the Oppositions, Anticipation, Provisions of Secrecy,        |   |
|---|--------------------------------------------------------------------------------|---|
|   | Revocations, Patent of Addition, and Restoration of Patents.                   |   |
|   | Section 67 - Section 115 of the Indian Patent Act, 1970 with specific focus on |   |
|   | Patent Assignments, Compulsory Licensing, Power of Central Government,         |   |
|   | and Infringement Proceedings. Section 116 - Section 162 of the Indian Patent   |   |
|   | Act, 1970 with specific focus on Convention/PCT Applications, Functions        |   |
|   | of Appellate Board and other Provisions.                                       |   |
|   | Amendment Rules 2016 with emphasis on important revisions to examination       |   |
|   | and Hearing procedures; provisions for start-ups and fees.                     |   |
| 6 | Indian IP Policy: India's New National IP Policy, 2016 – Govt. of India step   | 3 |
|   | towards promoting IPR - Govt. Schemes in IPR - Career Opportunities in IP      |   |
|   | – IPR.                                                                         |   |

### Assessment:

# Internal Assessment: 40 marks

- 1. Consisting of One Compulsory Class Tests of 40 Marks
- 2. Continuous evaluation : Test/Assignments /Quiz/Case studies/Seminar presentation of 40 Marks

# **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# **Books/References:**

- 1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.
- 2. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.
- 3. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.
- World Intellectual Property Organisation. (2004). WIPO Intellectual property Handbook. Retrieved from https://www.wipo.int/edocs/pubdocs/en/intproperty/489/wipo\_pub \_489.pdf

| Course Code | Course Name                    | Credits |
|-------------|--------------------------------|---------|
| IL 362      | Introduction to Bioengineering | 3       |

- 1. To understand and analyze the human body as a mechanical assembly of linkages and describe the fundamentals of biomechanics.
- 2. To Study the deformability, strength, viscoelasticity of bone and flexible tissues, modes of loading and failure and describe the types and mechanics of skeletal joints.
- 3. To describe movement precisely, using well defined terms (kinematics) and also to consider the role of force in movement (kinetics).
- 4. To teach students the unique features of biological flows, especially constitutive laws and boundaries.
- 5. To teach students approximation methods in fluid mechanics and their constraints.
- 6. To consider the mechanics of orthopedic implants and joint replacement, mechanical properties of blood vessels and Alveoli mechanics

- 1. Apply a broad and coherent knowledge of the underlying principles and concepts of biomechanics, particularly in the fields of kinematics and kinetics as applied to human and projectile motion.
- 2. Understand and describe the properties of blood , bone and soft tissues like articular cartilage tendons and ligaments.
- 3. Gain broad knowledge about the mechanics of moving systems and familiarity with human anatomy to competently analyze gross movement of the human body.
- 4. Be able to computationally analyze the dynamics of human movement from the most commonly used measurement devices in the field, such as motion capture and force platform systems.
- 5. Use knowledge gained to competently interpret the current understanding of human movement and present recommendations for further study.

| Module | Detail Content                                                                                                                                                                                                                             | Hrs. |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | Introduction: Definition of Biomechanics, Selected Historical highlights,                                                                                                                                                                  | 6    |
|        | The Italian Renaissance, Gait century, Engineering Physiology & Anatomy                                                                                                                                                                    |      |
| 2      | Tissue Biomechanics:                                                                                                                                                                                                                       | 8    |
|        | Bone structure & composition mechanical properties of bone, cortical and cancellous bones, viscoelastic properties, Maxwell & Voight models – anisotropy. Structure and functions of Soft Tissues: Cartilage, Tendon, Ligament, and Muscle |      |
| 3      | <b>Joints Biomechanics:</b> Skeletal joints, forces and stresses in human joints,<br>Analysis of rigid bodies in equilibrium, free body diagrams, types of joint,<br>biomechanical analysis of elbow, shoulder, hip, knee and ankle.       | 7    |
| 4      | <b>Biomaterials:</b> Brief Anatomy, Bone, cartilage, ligament, tendon, Muscles, biofluid their physical properties                                                                                                                         | 6    |
| 5      | <b>Implants:</b> General concepts of Implants, classification of implants, Soft tissues                                                                                                                                                    | 6    |
| 6      | Application of advanced engineering techniques to the human body, case studies.                                                                                                                                                            | 6    |

# Assessment:

### **Internal Assessment: 40 marks**

- 1. Consisting of One Compulsory Class Tests of 40 Marks
- 2. Continuous evaluation : Test/Assignments /Quiz/Case studies/Seminar presentation of 40 Marks

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

### **Books/References:**

- 1. Nigg, B.M.and Herzog, W., "BIOMECHANICS of Musculo skeleton system", John Willey & Sons, 1st Edition.
- 2. Saltzman, W.L., "BIOMEDICAL ENGINEERING: Bridging medicine and Technology", Cambridge Text, First Edition.
- 3. Winter, D., "BIOMECHANICS and Motor Control of Human Movement", WILEY Interscience Second edition
- 4. Prof. Ghista, Biomechanics, Private Publication UAF, 2009
- 5. White & Puyator, Biomechanics, Private publication UAE, 2010
- 6. R. M. Kennedy, A textbook of Biomedical Engineering, GTU, 2010
- 7. Richard Shalak & ShuChien, Handbook of Bioengineering,
- 8. Sean P. Flanagan, Flanagan, Biomechanics: A case based Approach, Jones & Bartlett Publishers, 2013
- 9. Y. C. Fung, Yuan-Cheng Fung, Biomechanics: mechanical Property of living Tissue, Springer, 1996.
- 10. Carol A. Oatis, The Mechanics and Pathomechanics of Human Movement, Lippincott Williams & Wilkins, 2010

| Course Code | Course Name    | Credits |
|-------------|----------------|---------|
| IL 363      | Product Design | 3       |

- 1. To familiarize with fundamental product design concepts
- 2. To acquaint with product design methodologies
- 3. To understand product design needs and issues in industry

- 1. Demonstrate product design and development process.
- 2. Analyze a product in perspective of aesthetic and ergonomic considerations.
- 3. Illustrate considerations of Design for Manufacturing and Assembly in product development.
- 4. Apply appropriate tools and techniques in the design of solutions that are usable and functional for various applications.
- 5. Design the products as per the customer/industry requirements
- 6. Apply principles of economy and demonstrate legal and social issues pertaining to product development.

| Module | Detail Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs. |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | Product definition, specification, Phases of product development:<br>conceptual, embodiment and detailed design, product and technology<br>development cycle, Concept generation and evaluation methods, product<br>architecture, Product life cycle Management with case studies, Product<br>analysis.<br>Creativity and Idea generation technique, importance of Quality<br>Dimensions: Performance, Features, aesthetics, Ergonomics, Reliability,<br>Sustainability, Serviceability, Brand value, Value Vs cost, Importance of<br>shape, color, feature & Resemblance. | 6    |
| 2      | Design Factors: Ergonomics, Aesthetics, Anthropometry, Comforts,<br>Economic factors<br>Axiomatic design principles and case studies.<br>Design Thinking, Design by Innovation and collaboration<br>Material and Process selection Methods, Expert systems. Computer<br>Database Approach, performance indices decision matrix, AHP<br>and fuzzy approach, Introduction to material and process selection<br>software.                                                                                                                                                     | 6    |
| 3      | Design for Manufacturing (DFM) and Design for Assembly (DFA)<br>Designs for Maintainability and Reliability and some methods for<br>reliability assessment, Designs for Environment, Design for<br>Robustness: Taguchi Designs & Design of Experiments (DOE).                                                                                                                                                                                                                                                                                                              | 8    |
| 4      | Product Design Tools and Techniques:<br>Value Engineering / Value Analysis: definition, methodology- FAST,<br>Benchmarking, Supplier involvement robust design, QFD, Design &<br>process FMEA. Reverse Engineering, Concurrent engineering &<br>Sequential engineering, Case studies.                                                                                                                                                                                                                                                                                      | 8    |

| 5 | Product Development Cycle and Importance of Prototyping. Types of<br>prototypes. Principal and advantages & Different Type of Generative<br>Manufacturing process, Viz. Stereo lithography. FDM, SLS etc. Factors<br>Concerning to RP: Consideration for Adoptions, Advantages, Accuracy<br>and Economic Consideration.<br>Introduction to Assembly Modeling, Top-Down and Bottom-Up<br>Approaches of AM, Mating Conditions, representation Schemes.<br>Generation of Assembly Sequences. Case studies | 6 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 6 | Economics of Product Development: Product costing, Principals of<br>Economy, Engineering Economy and Design Process, Economic<br>Analysis, Inflation, Time Value of Money, Numerical on Internal Rate of<br>Return and Net Present Value (NPV) method.<br>Legal and social issues, Patents and IP acts.                                                                                                                                                                                                | 6 |

# Assessment:

### Internal Assessment: 40 marks

Mini project on product design from idea generation to prototyping

# End Semester Examination: 60 marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the syllabus.

# **Reference Books:**

- 1. Product Design and Manufacturing by A.K.Chitale, R.C.Gupta, PHI.
- 2. Product Design and Development by Ulirich Karl T. and Eppinger Steven D, McGraw Hill.
- 3. Engineering Design by Dieter George E., McGraw Hill.
- 4. Handbook of Product Design for Manufacturing by Bralla, James G, McGraw Hill.
- 5. Product Design by Kevin Otto & Kristin Wood

| Course Code | Course Name | Credits |
|-------------|-------------|---------|
| IL 364      | Visual Art  | 3       |

- 1. To enable learners to develop aesthetic judgement, visual perception, critical thinking skills in the different forms of art and understand its application.
- 2. To promote the concept of visual design and understand the different meanings assigned to colours, its impact and problems.
- 3. To provide the opportunity and scope to use the image editing software for creating images for Web and Video.
- 4. To inculcate the basic skills required in drawing and painting through exposure in nature and study of still objects.
- 5. To train students to express their feelings and write imaginatively.
- 6. To prepare the learners for the use of clay modelling techniques and its industrial applications.

- 1. Acquire the skills necessary for aesthetic judgement, visual perception and critical thinking required in different forms of art.
- 2. Demonstrate the understanding of the concept of visual design with respect to the different meanings assigned to colours and the problems associated.
- 3. Illustrate effective use of image editing software for creating images for the Web and Video.
- 4. Determine the importance of drawing and painting with respect to nature and still objects.
- 5. Perform successfully in expressing their feelings creatively.
- 6. Develop the techniques required for clay modelling and sculpture for industrial use.

| Module | Detail Content                                                                                                                                                                                                                                         | Hrs. |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | History of Art and Architecture- Changing needs and forms of art from the                                                                                                                                                                              | 4    |
|        | Palaeolithic period to The Renaissance period with special reference to                                                                                                                                                                                |      |
|        | Roman, Indian and Chinese art                                                                                                                                                                                                                          |      |
| 2      | Introduction and concepts of visual design with special emphasis on the                                                                                                                                                                                | 5    |
|        | psychological impact of colour                                                                                                                                                                                                                         |      |
| 3      | Introduction to image editing software, tools, application and creating<br>Images for Web and Video. With special reference to Adobe Photoshop                                                                                                         | 7    |
| 4      | Fundamentals of Drawing- study of forms in nature, study of objects and<br>study from life, creative painting- basic techniques, tools and equipment,<br>medium of painting.                                                                           | 6    |
| 5      | Creative writing- Movie critique, book reviews, Poems, short plays and skits, Humorous Essays, Autobiography and short stories.                                                                                                                        | 7    |
| 6      | Creative sculpture- Introduction to clay modelling techniques, study of natural and man-made objects in clay, Sculpture with various materials - Relief in Metal Sheets – Relief on Wood – Paper Pulp - Thermocol. Sculpture with readymade materials. | 7    |

# Assessment:

#### **Internal Assessment:**

| Test 1     | : 10 marks (Practical) |
|------------|------------------------|
| Test 2     | : 10 marks (Practical) |
| <b>m</b> 1 | 00 1                   |

Total : 20 marks

# **End Semester Examination:**

| Theory    | : 40 marks |
|-----------|------------|
| Practical | : 40 marks |

# **Reference Books:**

- 1. Gill Martha. (2000). Color Harmony Pastels: A Guidebook for Creating Great Color Combinations. Rockport Publishers.
- 2. Janson, Anthony F. (1977). History of art, second edition, H.W. Janson. Instructor's manual. Englewood Cliffs, N.J.: Prentice-Hall.
- 3. Brommer, Gerald F. (1988). Exploring Drawing. Worcester, Massachusetts: Davis Publications.
- 4. Wendy Burt Thomas. (2010). The Everything Creative Writing Book: All you need to know to write novels, plays, short stories, screenplays, poems, articles, or blogs: All You Need ... Stories, Screenplays, Blogs and More. Fw Media; 2nd edition.
- 5. Élisabeth Bonvalot. (2020). Sculpting Book: A Complete Introduction to Modeling the Human Figure.

| Course Code | Course Name                                 | Credits |
|-------------|---------------------------------------------|---------|
| IL 365      | Journalism, Media and Communication studies | 3       |

- 1. Provide a good grounding in the basic concepts of Journalism, Mass communication and Media.
- 2. Familiarize learners with reporting and editing practices.
- 3. Teach students to write editorials, feature articles, interviews, reviews, criticism etc.
- 4. To inculcate the skills required for writing in online newspapers, blogs, email and cell phone.
- 5. To prepare the learners for understanding the importance of Press laws and Ethics.
- 6. To train learners in advertising techniques and Public Relation Communication

- 1. Acquire conceptual and theoretical knowledge of Journalism, Mass Communication and Media Studies and learn to think critically about issues and topics of the subject.
- 2. Demonstrate the understanding of reporting and editing from Newspaper and the Organization.
- 3. Perform successfully in writing effective editorials, featured articles reviews etc.
- 4. Illustrate the skills required for writing in online newspapers, blogs, emails etc.
- 5. Determine the importance of Press Laws and Ethics.
- 6. Develop an understanding of the techniques required for advertising and Public Relation Communication.

| Module | Detail Content                                                            | Hrs. |
|--------|---------------------------------------------------------------------------|------|
| 1      | Introduction to Journalism, Communication, Media and Cultural Studies-    | 5    |
|        | Basics of Mass communication, Pioneers of Indian Journalism,              |      |
|        | Introduction to newspapers, magazines and other publications.             |      |
|        | Introduction to broadcast journalism with special reference to television |      |
| 2      | Reporting and Editing Practices-Reporting different news, stories from    | 7    |
|        | Newspaper, and Organization. Principles of editing, rewriting, and        |      |
|        | translation                                                               |      |
| 3      | Writing for Print- Newspaper Content Writing Opinion pieces, editorials,  | 7    |
|        | feature articles, interviews, profiles, reviews, criticism etc.           |      |
| 4      | Writing for Media- Introduction to New Media Writing for Online           | 6    |
|        | newspapers Blogs Cell phone Communication E-mail                          |      |
| 5      | Press Laws and Ethics- Origin and definition of Law, Law and Morality,    | 4    |
|        | Types of Law – Civil and Criminal, Press Legislations, Freedom of the     |      |
|        | Press Defamation Contempt of Court                                        |      |
| 6      | Public Relations and Advertising- Introduction to Public Relations Stages | 7    |
|        | of PR Communication with Public Need and Meaning of Advertising,          |      |
|        | Advertising strategies and Sales Promotion                                |      |

# Assessments:

Internal Assessment:

- Test 1 : 15 marks
- Test 2 : 15 marks
- Total : 30 marks

# End Semester Examination:

Theory: 45 marks

# Term work:

25 marks (10 marks for assignment, 10 marks for practical and 5 marks for attendance)

# **Books/References:**

- 1. Rangaswamy, Parthasaratihi, (1985). *Journalism in India*, Sterling Publication, New Delhi.
- 2. Jeffrey, Robin, (2009). *India's Newspaper Evolution*, Oxford University Press, Delhi.
- 3. Singh, Devvrat. (2012). *Indian Television: Content, Issues and Challenges*, HarAnand Publications Delhi.
- 4. Daryl L. Frazell, George Tuck. (1996). <u>Principles of Editing: A Comprehensive Guide for</u> <u>Students and Journalists Principles of Editing: A Comprehensive Guide for Students and</u> <u>Journalists.</u> McGraw-Hill
- 5. Barry Newman. (2015). <u>News to Me: Finding and Writing Colorful Feature Stories</u>. Paperback
- 6. The Associated Press. (2017). *The Associated Press Stylebook: and Briefing on Media Law.* Revised, Updated Edition. Paperback.
- 7. Kristina Halvorson. (2012) Content Strategy for the Web, 2nd Edition. New Riders

| Course Code | Course Name                  | Credits |
|-------------|------------------------------|---------|
| IL 366      | <b>Computational Physics</b> | 3       |

1. To expose the students to the vast field of computational physics.

- To understand various approaches of simulating physical systems on a computer.
   To choose the correct method to solve a computational problem.

| Module | Detail Content                                                                                                                                                                                                                                                                                                                                                                  | Hrs. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | <b>Introduction to Statistical Mechanics :</b><br>Thermodynamics and kinetic theory, specification of state of system, Concept of ensemble, phase space, microcanonical ensemble (NVE), statistical concept of temperature, canonical ensemble (NVT), equipartition theorem, Maxwell-Boltzmann velocity distribution, grand canonical ensemble (µVT), chemical potential        | 6    |
| 2      | <b>Molecular Dynamics (MD):</b><br>Integrating equation of motion of a few variables, role of molecular dynamics (MD), the basic machinery, Lennard-Jones potentials modeling physical system, boundary conditions, time integration algorithm                                                                                                                                  | 7    |
| 3      | Starting a simulation, simulation of microcanonical (NVE) and<br>canonical ensemble (NVT), controlling the system (temperature,<br>pressure), thermostats and barostats, equilibration, running,<br>measuring and analyzing MD simulation data, measurement of<br>statistical quantities, interatomic potentials, force fields.                                                 | 7    |
| 4      | Monte Carlo (MC) Method :<br>Random number: Definition, True and Pseudo random number<br>generators (RNG), uniform and non-uniform RNG, Linux RNG,<br>testing a RNG.                                                                                                                                                                                                            | 6    |
| 5      | <ul> <li>Monte Carlo simulations :</li> <li>Buffon's needles, MC Integration, hit and miss ( estimation of pi and e), stochastic processes, sample mean integration, importance sampling, Markov Chain, Metropolis method, master equation, introduction to 2D-Ising model.</li> <li>Random walk:</li> <li>1-D and 2-D random walk, calculation of rms displacement.</li> </ul> | 7    |
| 6      | Introduction to Simulations of quantum systems                                                                                                                                                                                                                                                                                                                                  | 3    |

### **Internal Assessment:**

Internal Examination : 20 marks Internal Term work : 20 marks

# **End Semester Examination:**

Theory : 40 marks Practical Examination : 20 Marks

# **Books/References:**

- 1. Statistical Physics Vol. 5 (from the series of Berkeley Physics Course)
- 2. Introduction to Computational Physics by Tao Pang (Cambridge University Press)
- 3. An Introduction to Computer Simulation Methods : Applications to Physical Systems by Harvey Gould and
- 4. Jan Tobochnik, (Pearsom Publications)
- 5. Understanding Molecular Simulations by Frenkel and Smit (Acadei Lic P Lss ,

| Course Code | Course Name                             | Credits |
|-------------|-----------------------------------------|---------|
| IL 367      | <b>Polymers and Polymeric Materials</b> | 3       |

- 1. To impart a scientific approach and to familiarize the applications of polymeric materials in the field of engineering.
- 2. The student with the knowledge of the basic polymer science will understand and explain scientifically the various problems related to polymeric materials in the industry/engineering field.
- 3. To develop abilities and skills that are relevant to the study and practice of polymer science and engineering.

- 1. To understand and analyze various polymeric materials and to establish the structure property relationship.
- 2. To select the proper polymeric material for specific industrial applications.
- 3. To become familiarized with various characterization techniques related to polymeric materials.

| Module | Detail Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs. |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | <b>Basic understanding of Polymeric aspects:</b><br>Monomers, functionality, degree of polymerizations, classification of polymers, glass transition, melting transition, criteria for rubberiness, polymerization methods: addition and condensation; metallocene polymers and other newer techniques of polymerization, copolymerization, monomer reactivity ratios and its significance, different copolymers, random, alternating, azeotropic copolymerization, block and graft copolymers, concept of average molecular weight, determination of number average, weight average | 9    |
| 2      | <b>Polymer Technology:</b><br>Compounding of plastics, Polymer compounding-need and significance, different compounding ingredients for rubber and plastics, crosslinking and vulcanization                                                                                                                                                                                                                                                                                                                                                                                          | 5    |
| 3      | <b>Polymer Processing:</b><br>Fabrication of plastics by different moulding process, Compression molding, transfer molding, injection molding, blow molding, reaction injection molding, extrusion, pultrusion, calendaring, rotational molding, thermoforming, rubber processing in two-roll mill, internal mixer                                                                                                                                                                                                                                                                   | 6    |
| 4      | <b>Polymer blends:</b><br>Thermo- dynamical aspects of polymer blends and its miscibility, Role of compatibilizer, Composition based structure (dispersed and co-continuous), properties and its application, choice of polymers for blending, thermodynamics, phase morphology, polymer alloys, polymer eutectics, plastic-plastic, rubber-plastic and rubber-rubber blends                                                                                                                                                                                                         | 6    |
| 5      | <b>Polymer composites:</b><br>Fundamentals of polymer composites, Advanced polymer nanocomposites, Fillers used for polymer composites, Effect of processing condition and composition, Polymer composites structure,                                                                                                                                                                                                                                                                                                                                                                | 6    |

|   | characterisation and design, physical and chemical modification of polymer composites.<br>1-D and 2-D random walk, calculation of rms displacement.                                                                                                                                                                                                                                                                                              |   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 6 | <b>Testing of Polymeric Materials:</b><br>Samples preparation, Mechanical-static and dynamic tensile, flexural, compressive, abrasion, endurance, fatigue, hardness, tear, resilience, impact, toughness. Conductivity-thermal and electrical, dielectric constant, dissipation factor, power factor, electric resistance, surface resistivity, volume resistivity, swelling, aging resistance, establishment of structure property relationship | 7 |

### Assessments:

### **Internal Assessment:**

Assessment consists of two class tests of 40 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and the second class test student may need to perform experiments related to polymeric material synthesis or polymer testing depending on the available facilities.

# **End Semester Examination:**

In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

- 1. Question paper will consist of 4 questions, each carrying 15 marks.
- 2. Question number 1 will be compulsory and based on maximum contents of the syllabus
- 3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
- 4. Total four questions need to be solved.

# **Books/References:**

- 1. "Fundamentals of Polymer Engineering" by Anil Kumar and Rakesh Gupta.
- 2. "Principles of Polymer Systems" by F Rodriguez.
- 3. "Polymer Science" by V R Gorwankar.
- 4. "Textbook of Polymer Science" by F W Billmeyer. 5. "Polymer Chemistry" by P C Heimenz.

| Course Code | Course Name    | Credits |
|-------------|----------------|---------|
| IL 368      | Vehicle Safety | 3       |

- 1. To familiarize basic concepts of vehicle safety.
- 2. To familiarize accident reconstruction analysis methods
- 3. To acquaint with different issues related to vehicle safety in India

- 1. Comprehend Vehicle design from safety point of view.
- 2. Apply concepts of accident reconstruction analysis in real world.
- 3. Enumerate interrelationship among occupant, restraint systems and vehicles in accidents.
- 4. Illustrate role and significance of seat in Rear crash safety
- 5. Demonstrate different active and passive safety systems available in vehicles
- 6. Contribute to the society by being proactive to the cause of safety on roads and in vehicles

| Module | Detailed Contents                                                             | Hrs. |  |  |  |  |
|--------|-------------------------------------------------------------------------------|------|--|--|--|--|
| 1      | Introduction to vehicle safety-the integrated approach and its classification | 6    |  |  |  |  |
|        | SAVE LIVES- by WHO                                                            |      |  |  |  |  |
|        | Importance of Risk evaluation and communication, Concepts of                  |      |  |  |  |  |
|        | Universal design, India's BNVSAP and its outcomes                             |      |  |  |  |  |
| 2      | Crash and distracted driver, Human error control                              | 8    |  |  |  |  |
|        | Crash Testing, Use of Dummies, evolution and built of dummies.                |      |  |  |  |  |
|        | Relevance of Star ratings, NCAPs around the world-                            |      |  |  |  |  |
|        | Accident Data, Biomechanics and Occupant Simulation                           |      |  |  |  |  |
|        | Vehicle Body Testing, Dynamic Vehicle Simulation Tests                        |      |  |  |  |  |
|        | Occupant Protection, Compatibility, Interrelationship Among Occupants,        |      |  |  |  |  |
|        | Restraint Systems and Vehicle in Accidents                                    |      |  |  |  |  |
| 3      | Significance of Rear Crash Safety                                             | 6    |  |  |  |  |
|        | Role of seat in Rear crash safety                                             |      |  |  |  |  |
|        | Self aligning head restraints                                                 |      |  |  |  |  |
|        | Pedestrian Protection testing and systems                                     |      |  |  |  |  |
|        | Under run Protection Devices                                                  |      |  |  |  |  |
| 4      | Introduction to Accident Analysis Reconstruction methods                      |      |  |  |  |  |
|        | Skid distances and Critical speed from Tire Yaw marks                         |      |  |  |  |  |
|        | Reconstruction of Vehicular Rollover Accidents                                |      |  |  |  |  |
|        | Analysis of Collisions                                                        |      |  |  |  |  |
|        | Reconstruction Applications                                                   |      |  |  |  |  |
|        | Impulse Momentum Theory                                                       |      |  |  |  |  |
|        | Crush Energy<br>Photogrammetry for accident constructions                     |      |  |  |  |  |
|        | Photogrammetry for accident constructions                                     |      |  |  |  |  |
| 5      | Antilock braking system                                                       | 5    |  |  |  |  |
|        | Electronic Stability Program                                                  |      |  |  |  |  |
|        | Low tire pressure warning system                                              |      |  |  |  |  |
|        | Collision avoidance systems                                                   |      |  |  |  |  |
| 6      | Basic Vehicle Operations and Road/Helmet Safety Activity                      | 6    |  |  |  |  |

# Assessment:

# **Internal Assessment: 40 marks**

- 1. Consisting of One Compulsory Class Tests of 40 Marks
- 2. Continuous evaluation : Test/Assignments /Quiz/Case studies/Seminar presentation of 40 Marks

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

### **References Books:**

- 1. Automotive vehicle safety by George Peters and Barbara Peters, CRC Press, 2002.
- 2. Vehicle Accident Analysis and Reconstruction Methods by Raymond M. Brach and R. Matthew Brach, SAE International, Second Edition, 2011.
- 3. Role of the seat in rear crash safety by David C. Viano, SAE International, 2002.
- 4. Automotive Safety Handbook by Ulrich W. Seiffert and LotharWec. , SA 2 mic national, 2007.
- 5. Public Safety Standards of the Republic of India

| Course Code | Course Name                          | Credits |
|-------------|--------------------------------------|---------|
| IL 369      | Maintenance of Electronics Equipment | 3       |

### Lab Objectives:

- 1. To demonstrate use of different types of hand tools
- 2. To understand testing of different active and passive components mounted on PCB
- 3. To understand functionality TTL and CMOS digital IC tester
- 4. To demonstrate computer assembling, troubleshooting and software installation
- 5. To understand/demonstrate concept of circuit diagram of LED/LCD TV, DTH and mobile phone troubleshooting
- 6. To understand concept of medical equipments

### Lab Outcomes:

- 1. Demonstrate use of different types of hand tools
- 2. Understand testing of different active and passive components mounted on PCB
- 3. Understand functionality TTL and CMOS digital IC tester
- 4. Demonstrate computer assembling, troubleshooting and software installation
- 5. Understand/demonstrate concept of circuit diagram of LED/LCD TV, DTH and mobile phone troubleshooting
- 6. Understand concept of medical equipments

| SN | Detailed Lab/Tutorial Description                                                                                                                     | Hrs. |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1  | Demonstrate use of various hand held tools.                                                                                                           | 2    |
| 2  | Test the performance of different passive electronic components (fixed/variable)                                                                      | 2    |
| 3  | Test the performance of active electronic components like general purpose transistor/FET/MOSFET/SCR/ DIAC/TRIAC with DMM and CRO OR Components Tester | 4    |
| 4  | Verify the functionality of TTL and CMOS Digital IC's using IC tester                                                                                 | 4    |
| 5  | Explore a datasheet of minimum any five electronics components and analog/ Digital IC's.                                                              | 2    |
| 6  | Draw the given regulated power supply circuit/ SMPS (from any television/fridge/ computer system/ laboratory etc)                                     | 2    |
| 7  | Identify basic sections of a personal computer/Laptop                                                                                                 | 2    |
| 8  | Demonstrate Assembling of Personal Computer/Laptop                                                                                                    | 4    |
| 9  | Troubleshoot the booting process of computer system and install different hardware associated with computer (HDD, LAN Card, Audio System etc)         | 4    |
| 10 | Study Installation of Software and Configure Internet                                                                                                 | 4    |
| 11 | Explore circuit diagram of LED/LCD TV.                                                                                                                | 2    |
| 12 | Demonstrate Installation of DTH system                                                                                                                | 4    |
| 13 | Demonstrate installation Solar power system                                                                                                           | 4    |
| 14 | Practice steps for mobile troubleshooting                                                                                                             | 4    |
| 15 | Visit to Medical Equipment Industry/Laboratory                                                                                                        | 8    |

# Assessment:

#### **Internal Assessment:**

| Internal Assessment 1 | : 20 marks |
|-----------------------|------------|
| Internal Assessment 2 | : 20 marks |
| Total                 | : 40 marks |

#### **End Semester Examination:**

| Term work             | : 30 marks |
|-----------------------|------------|
| Practical Examination | : 30 Marks |

### **Books/References:**

- 1. Troubleshooting and Maintenance of Electronics Equipment, Singh K. Sudeep, Katson Book ,New Delhi ,II edition , Reprint 2014
- 2. Mobile repairing Books, Manohar Lotia, BPB Publication, New De' 1, la st edition
- 3. Troubleshooting Electronic Equipment: Includes Repair and Mainte. ance see d Edition, Khandpur R. S., Tata McGraw-Hill Education, New ..., India, lates edition.
- 4. Data Books, National semiconductor.

| Course Code | Course Name            | Credits |
|-------------|------------------------|---------|
| ET 392      | <b>Major Project A</b> | 2       |

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

# **Course Outcome:**

- 1. Learner will be able to...
- 2. Identify problems based on societal /research needs.
- 3. Apply Knowledge and skill to solve societal problems in a group.
- 4. Develop interpersonal skills to work as member of a group or leader.
- 5. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 6. Analyze the impact of solutions in societal and environmental context for sustainable development.
- 7. Use standard norms of engineering practices
- 8. Excel in written and oral communication.
- 9. Demonstrate capabilities of self-learning in a group, which leads to life long learning.

10. Demonstrate project management principles during project work.

# **Guidelines for Project A :**

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover activity of Project A,B,C
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during major project-A,B &C activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.

Department of Electronics and Telecommunication Engineering - Syllabus for Undergraduate Programme

# **Guidelines for Assessment of Major Project:**

### **Term Work**

- 1. The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of major project to be evaluated on continuous basis, minimum two reviews in each semester VI,VII and VIII.
- 2. In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- 3. Distribution of Term work marks for all the three semesters shall be as below;
  - A. Marks awarded by guide/supervisor based on log book
  - B. Marks awarded by review committee
  - C. Quality of Project report

# **Oral & Practical:**

Oral & Practical examination of Project-A should be conducted by Internal and External examiners approved by University of Mumbai. Students have to give presentation and demonstration on the Project-A.

| Subject Code | ubject Code Subject Name |     |
|--------------|--------------------------|-----|
| ET 401       | Microwave & RF Design    | 3+1 |

# **Prerequisite:**

**Electronic Communication Systems** 

Electromagnetic Engineering

Filter Basics

Course Objectives: Students will try:

- 1. Understand the basics of Microwave Systems.
- 2. Learn working principles of waveguides and passive components.
- 3. Illustrate Microwave generators.
- 4. Discuss Microwave Semiconductor Devices.
- 5. Design of composite filters
- 6. Design small signal RF Amplifiers

Course Outcomes: Learners will be able to:

1. Analyze microwave networks and components using scattering parameters and design impedance matching networks.

- 2. Solve problems on waveguides and identify passive components.
- 3. Describe the construction and operation of Microwave generators/Tubes.
- 4. To describe Microwave Semiconductor Devices and the measurements techniques and parameters measured as frequency ,VSWR ,power etc.
- 5. To design the RF Filters
- 6. To design small signal rf amplifiers

| Sr.<br>No. | Module                        | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hours | CO<br>Mapping |
|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| 01         | Introduction to<br>Microwaves | <ul> <li>1.1 Microwave Frequency Bands in Radio<br/>Spectrum, Characteristics, Advantages and<br/>Applications of Microwaves.</li> <li>1.2 Scattering Parameters: Characteristics<br/>and Properties.</li> <li>1.3 Design of Impedance matching network<br/>using distributed parameters. Quarter Wave<br/>Transformer</li> <li>1.4 Strip lines, Micro strip lines and coupled<br/>lines, Coplanar Waveguides and its<br/>applications</li> </ul> | 06    | CO1           |
| 02         | Waveguides                    | 2.1 Rectangular and circular waveguides:                                                                                                                                                                                                                                                                                                                                                                                                          | 08    | CO2           |

|    | and Passive<br>Devices and<br>semiconductor<br>devices                                                                                                                                                                         | Construction, Working and Mode analysis.<br>2.2 Resonators, Re-entrant cavities,<br>Microwave Junctions, Hybrid ring, Directional<br>couplers, Attenuators and Ferrite devices such<br>as Isolators, and Circulators.                      |    |     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 03 | Microwave<br>Tubes                                                                                                                                                                                                             | Microwave Tubes :<br>3.1 Two Cavity Klystron, Reflex Klystron.<br>3.2 Helix Travelling Wave Tube and Cross Field<br>Amplifier.<br>3.3 Backward Wave Oscillator ,Cylindrical<br>Magnetron , Gyrotron                                        |    | CO3 |
| 04 | Microwave<br>Semiconductor<br>devices and<br>Measurements                                                                                                                                                                      | <ul> <li>4.1 Diodes: Gunn, Varactor, PIN, Tunnel, Point<br/>Contact, Schottky Barrier</li> <li>4.2, IMPATT, TRAPATT, and BARITT</li> <li>4.3 Measurement of VSWR, Frequency, Power,<br/>Noise, Q-Factor, Impedance, Attenuation</li> </ul> | 05 | CO4 |
| 05 | RF<br>DesignFilter5.1 Composite Filters, Filter Design Using I.L<br>method, Microstrip Low pass filter design Using<br>Kuroda's Identity, Low pass filter Design<br>5.2 RF High pass, band pass and band stop filter<br>Design |                                                                                                                                                                                                                                            | 06 | CO5 |
| 06 | RF Small<br>signal<br>Amplifier<br>Design                                                                                                                                                                                      | <ul><li>6.1 Characteristics and various gains of amplifier, RF amplifier Design for maximum gain and specific Gain,</li><li>6.2 Low Noise amplifier -Design and its applications</li></ul>                                                 | 06 | CO6 |

# **Text Books:**

- 1. Samuel Liao, Microwave Devices and Circuits, Prentice Hall
- 2. David Pozar, Microwave Engineering, Wiley Publication, Fourth Edition
- 3. Annapurna Das and S. K Das, -Microwave Engineering, McGraw Hill Education, Third Edition
- 4. Ludwig R. and Bogdanov G, RF Circuit Design, Prentice Hall, 2007.
- 5. Microwave Circuit Analysis And Amplifier Design ,Samuel Liao

# **References:**

- 1. Colin, Foundations of Microwave Engineering, Second Edition, Wiley Interscience, 2<sup>nd</sup> Edition
- 2. Devendra Misra, Radio Frequency and Microwave Communication Circuits- Analysis and Designs, John Wiley & Sons, 2nd Edition

| Subject Code |                                                                                                                                                                                                                                           | Subject Name                                                                                                                         |                                   | Credits  |               |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|---------------|
|              | ET L401                                                                                                                                                                                                                                   | Microwave & RF Desi                                                                                                                  | gn Lab                            | n Lab 01 |               |
| Sr.<br>No    |                                                                                                                                                                                                                                           |                                                                                                                                      | H/W or S/W                        | Hours    | CO<br>mapping |
| 1            | Introduction to components                                                                                                                                                                                                                | Microwave test bench and                                                                                                             | MW Tes<br>Bench                   | st 2     | CO1,CO<br>2   |
| 2            | Measure and<br>characteristics<br>(Microwave Tub                                                                                                                                                                                          | plot power frequency<br>of the reflex klystron<br>be)                                                                                | MW Tes<br>Bench                   | st 2     | CO3           |
| 3            | Measurement of section                                                                                                                                                                                                                    | f VSWR using slotted Line                                                                                                            | MW Tes<br>Bench                   | st 2     | CO4           |
| 4            | Measure the wavelength of rectangular MW Test<br>waveguide Bench                                                                                                                                                                          |                                                                                                                                      | st 2                              | CO2      |               |
| 5            | To study and plot the VI characteristics of Gunn Diode                                                                                                                                                                                    |                                                                                                                                      | MW Tes<br>Bench                   | st 2     | CO4           |
| 6            | Generate and study the field patterns of various modes inside a rectangular waveguide                                                                                                                                                     |                                                                                                                                      | Virtual La<br>Kanpur IIT          | b 2      | CO2           |
| 7            | Generate and study the field patterns of various modes inside a rectangular waveguide cavity                                                                                                                                              |                                                                                                                                      | Virtual La<br>Kanpur IIT          | b 2      | CO2           |
| 8            | Frequency of 4 ( $50\Omega$ and 3 rd (                                                                                                                                                                                                    | a Low Pass Filter (LPF) for Cutoff<br>y of 4 GHz, Impedance of<br>3 rd Order 3dB ripple Chebyshev<br>ng FR4 substrate in CST Studio. |                                   | 2        | CO5           |
| 9            | Divider) for Cut                                                                                                                                                                                                                          | e Hybrid Coupler (Power<br>off Frequency of 900 MHz<br>rate using CST Studio.                                                        | CST Tool                          | 2        | CO1,CO2       |
| 10           | To plot Stability amplifier data                                                                                                                                                                                                          | circles,Gain circles for given                                                                                                       | ain circles for given VSmith Tool |          | CO6           |
| 11           | To design a maximum gain amplifier with<br>biased BJT of 1 GHz with following S-<br>parameter, S 11 = $0.60 \angle -155$ O; S 12 =<br>$0.0 \angle 0$ O; S 21 = $6 \angle 180$ O; S 22 =<br>$0.48 \angle -20$ O using VSmith<br>Simulator. |                                                                                                                                      | VSmith Tool                       | 2        | CO6           |
| 12           | -                                                                                                                                                                                                                                         | gure circles and gain circles<br>bad sections of 3 GHz                                                                               | Vsmith Tool                       | 2        | CO6           |

| of input and output matching networks for a GaAs FET low noise amplifier with following Specification, S $11 = 0.6 \angle -60$ O, S $12 = 0.05 \angle 26$ O, S $21 = 1.9 \angle 81$ O, S $22 = 0.5 \angle 60$ O, O pt = |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0.52  60  0,  0  pt =<br>$0.62 \angle 100  0,  \text{F}  \text{min} = 1.6  \text{dB}  \text{and}  \text{R}  \text{n} = 20 \Omega.$                                                                                      |  |  |

### Lab Assessments:

**1. Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempt to make experiments more meaningful, interesting and innovative.

**2. Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

| Subject Code | Subject Name                   | Credits |
|--------------|--------------------------------|---------|
| ET 402       | Human Values and Social Ethics | 02      |

**Course Objectives:** The objective of the course is four fold:

- 1. Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- 2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

**Course Outcomes:** By the end of the course, students are expected1.

- 1. To become more aware of themselves, and their surroundings (family, society, nature);
- 2. They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- 3. They would have better critical ability.
- 4. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- 5. They would be able to apply what they have learnt to their own self in different day-to-day settings in real life.

| SN | Details                                | Hours |
|----|----------------------------------------|-------|
| 1  | Ethics and Values :                    | 03    |
| -  | Meaning & Concept of Ethics            |       |
|    | Difference between Ethics and Values   |       |
|    | Ethical code of conduct                |       |
|    |                                        |       |
| 2  | Professional Ethics :                  | 05    |
|    | Professional Ethics vs Personal ethics |       |
|    | Components of professional ethics      |       |
|    | Professional values and its importance |       |
|    |                                        |       |

| 3 | Ethics and Society :                           | 05 |
|---|------------------------------------------------|----|
| 5 | Relevance of values and ethics in social work  | 05 |
|   | Ethical dilemmas                               |    |
|   | Values and ethical principles of social work   |    |
|   | · Service                                      |    |
|   | • Dignity and worth of a person                |    |
|   | · Importance of Human relationships            |    |
|   | · Integrity                                    |    |
|   | · Competence                                   |    |
|   | · Social Justice                               |    |
|   |                                                |    |
| 4 | Ethics in Technical writing :                  | 06 |
|   | Documenting sources                            |    |
|   | Presentation of Information                    |    |
|   | Ethics & Plagiarism                            |    |
|   |                                                |    |
| 5 | Ethics and Technology Development :            | 06 |
|   | Risk management and Individual rights          |    |
|   | Moral issues in development and application of |    |
|   | technology                                     |    |
|   | Privacy/confidentiality of information         |    |
|   | Managing Technology to ensure fair practices   |    |
|   |                                                |    |

# Assessment:

Term Work : 50 Marks (Continuous Evaluation)

# **Reference Books:**

1. Martin Cohen, 101 Ethical Dilemmas Routledge, 2nd edition, 2007.

2. M. Govindarajan, S. Natarajan & V.S. Senthilkumar, *Professional Ethics and Human Values*, Prentice Hall India Learning Private Limited, 2013.

3. Mike W. Martin, *Ethics in Engineering*, McGraw Hill Education; Fourth edition, 2017.

| Subject Code | Subject Name          | Total |
|--------------|-----------------------|-------|
| ET 404       | AI in Neural Networks | 04    |

#### Prerequisite: Basic Mathematics, Algorithms

#### **Course Objectives:**

- 1. To conceptualize the basic ideas and techniques underlying the design of intelligent systems.
- 2. To become familiar with the basics of Neural Networks.
- 3. To understand and design linear neural networks.
- 4. To distinguish Supervised and Unsupervised Learning techniques.
- 5. To become familiar with the basics of Feedback Neural Networks.
- 6. To understand radial basis function neural networks.

### **Course Outcomes:**

- 1. Ability to Identify the various characteristics of Artificial Intelligence
- 2. Able to compare the biological neural network system and artificial neural network system.
- 3. Able to design various real time applications using Multilayer perceptron.
- 4. Able to use the unsupervised learning techniques in machine learning applications.
- 5. Able to apply knowledge of the feedback neural network in machine learning.
- 6. Able to design radial basis neural networks for classification and regression.

| Sr.<br>No. | Module                                  | Detailed Content                                                                                                                                                                                                                                                | Hours | CO<br>Mapping |
|------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Basics of<br>Artificial<br>Intelligence | AI problems, foundation of AI and history of AI intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation.                                          | 05    | CO1           |
| п          | Artificial<br>Neural<br>Network         | ANN and their biological roots and motivations.<br>ANNs as numerical data/signal/image processing<br>devices. a summing dendrite, synapses and their<br>weights, pre- and postsynaptic signals, activation<br>potential and activation function. Excitatory and | 06    | CO2           |

|    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 1   |
|----|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|    |                                          | inhibitory synapses. The biasing input. Types of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |
|    |                                          | activating functions. Encoding (training phase) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |
|    |                                          | decoding (active phase).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |
| Ш  | Linear<br>Networks                       | Adaptive linear element, Linear regression. The<br>Wiener-Hopf equation. The Least-Mean-Square<br>(Widrow-Hoff) learning algorithm. Method of<br>steepest descent. Adaline as a linear adaptive filter. A<br>sequential regression algorithm.<br>Multi-Layer Feed-forward Neural Networks:- Multi-<br>Layer Perceptrons. Supervised Learning.<br>Approximation and interpolation of functions. Back-<br>Propagation Learning law. Fast training<br>algorithms. Applications of multilayer perceptrons:<br>Image coding, Paint-quality inspection, Net talk. | 09 | CO3 |
| IV | Self-Organ<br>izing<br>Systems:          | Unsupervised Learning, Pattern clustering,<br>Topological mapping, Kohonen's self-organizing map,<br>Local learning laws-Generalized Hebbian<br>Algorithm. The Oja's and Sanger's rules. Principal<br>component analysis - Karhunen-Loeve transform.                                                                                                                                                                                                                                                                                                        | 07 | CO4 |
| V  | Feedback<br>neural                       | Pattern storage and retrieval, Hopfield model,<br>Boltzmann machine, Recurrent neural networks,                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05 | CO5 |
|    | networks:                                | Convolution neural network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |     |
| VI | Radial<br>basis<br>function<br>networks: | Regularization theory, RBF networks for function<br>approximation, RBF networks for pattern<br>classification. Kernel methods for pattern analysis:-<br>Statistical learning theory, Support vector machines<br>for pattern classification, Support vector regression<br>for function approximation, Relevance vector<br>machines for classification and regression.                                                                                                                                                                                        | 07 | CO6 |

# Lab Syllabus

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4.Project/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                              | Hours |
|------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------|
| 1          | Basic                                                                            | Write a program to generate a few activation functions that are being used in neural networks. | 02    |
| 2          | Design                                                                           | To implement Mc-Culloch Pitts Model for a<br>Problem. (AND, OR, NOT, ANDNOT, XOR)              | 02    |
| 3          | Design                                                                           | Write a program for hebb net to classify two dimensional input patterns.                       | 02    |
| 4          | Design                                                                           | Write a program for perceptron net for an AND function with bipolar input and targets.         | 02    |

| 5  | Design   | Write a program for pattern classification using the perceptron network.      | 02 |
|----|----------|-------------------------------------------------------------------------------|----|
| 6  | Advanced | Write a XOR function with momentum factor using a back propagation algorithm. |    |
| 7  | Advanced | Write a radial basis function network to note the effect of regularization.   | 02 |
| 8  | Advanced | Write a program for Kohonen Self organizing map to cluster the input vector.  | 02 |
| 9  | Project  | Design an algorithm using back propagation for data compression.              | 02 |
| 10 | Project  | Design algorithm for character recognition using Khonen network.              | 02 |

### Theory Assessment:

### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

### End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the "Laboratory session batch wise".

Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempt to make experiments more meaningful, interesting and innovative.

**Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

#### **Text Books:**

- 1. S. Russel and P. Norvig, "Artificial Intelligence A Modern Approach", Second Edition, Pearson Education
- 2. S.Rajasekaran and G.A.VijayalakshmiPai "Neural Networks, Fuzzy Logic and Genetic Algorithms" PHI Learning.

#### **References:**

- 1. B.Yegnanarayana, Artificial Neural Networks, Prentice Hall of India.
- 2. Satish Kumar, Neural Networks A Classroom Approach, Tata McGraw-Hill.
- 3. S.Haykin, Neural Networks A Comprehensive Foundation, Prentice Hall

| Subject Code | Subject Name                                        | Total |
|--------------|-----------------------------------------------------|-------|
| ET 405       | Wearable devices and Industrial IOT<br>Applications | 4     |

## Prerequisite: IOT Basics & Smart sensors

### **Course Objectives: Six**

- 1. Identify the need for development of wearable devices and its implications on various sectors.
- 2. Discuss the usage of various biochemical and gas sensors as wearable devices.
- 3. To provide the overview of flexible electronics technology and the issues with materials processing for thin film electronics.
- 4. To acquaint the students with basics of various Powertrain sensors and associated systems for proper vehicle dynamics and stability in Automotive systems.
- 5. To describe the process involved in transferring the flexible electronics from foils to textiles and also the challenges, opportunities and the future of wearable devices.
- 6. To provide a basic understanding of the evolution of Industrial IoT and its functional modules to develop the skill set to implement Industrial IoT systems.

# Course Outcomes: Six (Based on Bloom's Taxonomy)

# Students will be able to

- 1. Identify the need for development of wearable devices and its influence on various sectors.
- 2. Analyze the usage of various biochemical and gas sensors as wearable devices and acquaint the usage of wearable devices as assistive devices, diagnostic devices and other modern applications.
- 3. Design and develop various wearable devices for detection of biochemical and physiological body signals, environmental monitoring, safety and navigational assistive devices.
- 4. Gain the competency in transferring the conducting and semiconducting fibers to smart textiles to solve the need for smart systems in a distributed environment.
- 5. Develop Business Outcome based IIoT Methodology using Economics of IIoT Data driven Analytics
- 6. Analyze the IIoT Market Size, Market Segments and Verticals considering the Importance of Security and Architecture

| Sr.<br>No. | Module                                                | Detailed Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hours | CO<br>Mapping |
|------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
|            |                                                       | Motivation for development of Wearable Devices,<br>The emergence of wearable computing and<br>wearable electronics, Types of wearable sensors :<br>Invasive, Non-invasive; Intelligent clothing,<br>Industry sectors' overview – sports, healthcare,<br>Fashion and entertainment, military, environment<br>monitoring, mining industry, public sector and<br>safety.                                                                                                                                               |       |               |
|            |                                                       | Wearable Inertial Sensors - Accelerometers,<br>Gyroscopic sensors and Magnetic sensors;<br>Modality of Measurement- Wearable Sensors,<br>Invisible Sensors, In-Shoe Force and Pressure<br>Measurement; Applications: Fall Risk<br>Assessment, Fall Detection , Gait Analysis,<br>Physical Activity monitoring: Human Kinetics,<br>Cardiac Activity, EnergyExpenditure<br>measurement: Pedometers, Actigraph.                                                                                                        |       |               |
| I          | Introduction<br>to Wearable<br>Sensors and<br>Devices | Wearable sensors for Body Temperature:<br>Intermittent and Continuous temperature<br>monitoring, Detection principles – thermistor,<br>infrared radiation, thermopile, Modality of<br>measurement wearable, adhesive/tattoo type.<br>Conductive textile electrodes, Knitted<br>PiezoresistiveFabric (KPF) sensors.                                                                                                                                                                                                  | 5     | 1             |
|            |                                                       | Wearable Biochemical Sensors: Parameters of<br>interest, System Design<br>–Textile based, Microneedle based; Types:<br>Noninvasive Glucose Monitoring Devices,<br>GlucoWatch® G2 Biographer, GlucoTrackTM;<br>Pulse oximeter, Portable Pulse Oximeters,<br>wearable pulse oximeter; Wearable capnometer for<br>monitoring of expired carbon dioxide. Wearable<br>gas sensors: Metal Oxide (MOS) type,<br>electrochemical type, new materials - CNTs,<br>graphene, Zeolites; Detection of atmospheric<br>pollutants. |       |               |
|            |                                                       | Wearable Cameras and Microphones for Navigation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |               |

|   |                                          | Cameras in wearable devices,<br>Applications in safety and security,<br>navigation, Enhancing sports media,<br>Automatic digital diary. Cameras in<br>smart-watches; Use of Wearable<br>Microphones: MEMS microphones,<br>Bioacoustics, Microphones and AI for<br>respiratory diagnostics and clinical trials.<br>Wearable Assistive Devices for the Blind<br>- Hearing and Touch sensation, Assistive<br>Devices for Fingers and Hands, Assistive<br>Devices for wrist, forearm and feet, vests<br>and belts, head-mounted devices.<br>Other Wearable DevicesWearable devicess<br>with Global Positioning System (GPS)<br>integration for tracking and navigation.<br>Wearable Optical Sensors - chemical<br>sensors, optical glucose sensors, UV<br>exposure indicators, speech recognition<br>using lasers; Photoplethysmography<br>(PPG), 3D imaging and motion capture.                                                                                                                                                                   |   |   |
|---|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Π | Wearable<br>Devices<br>for<br>Healthcare | Electrode – design, geometry,material;<br>Fabrication of interdigitated (IDE)<br>electrodes, choice of substrate, sensing<br>film; Wearable Bioelectric impedance<br>devices for Galvanic skin response;<br>Wearable ECGdevices: Basics of ECG<br>and its design, Electrodes and the<br>Electrode–Skin Interface; Wearable<br>EEGdevices: Principle and origin of EEG,<br>Basic Measurement set-up, electrodes and<br>instrumentation; Wearable EMG devices:<br>EMG/ SEMG Signals, EMG<br>Measurement – wearable surface<br>electrodes, SEMG Signal Conditioning,<br>Applications. Smart textile for<br>neurological rehabilitation system (NRS),<br>Study of flexible and wearable EMG<br>sensors. Epidermal electronics system<br>(EES), Study of<br>Multiparametric(ECG, EEG, EMG)<br>Epidermal Electronics Systems.Wearable<br>Blood Pressure (BP) Measurement:<br>Cuff-Based Sphygmomanometer,<br>Cuffless Blood Pressure Monitor.Study<br>of flexible and wearable Piezoresistive<br>sensors for cuffless blood pressure<br>measurement. | 6 | 2 |

| Π  | Overview<br>of flexible<br>electronics<br>technology<br>: Flexible<br>electronics<br>from foils to<br>textiles | History of flexible electronics - Materials<br>for flexible electronics: degrees of<br>flexibility, substrates, backplane<br>electronics, front plane technologies,<br>encapsulation - Fabrication technology<br>for flexible electronics - Fabrication on<br>sheets by batch processing, fabrication on<br>web by Roll-to Roll processing -<br>Additive printing. Social Aspects of<br>Wearability.Thin film transistors:<br>Materials and Technologies - Review of<br>semiconductors employed in flexible<br>electronics - Thin film transistors based<br>on IGZO - Plastic electronics for smart<br>textiles - Improvements and<br>limitations.Introduction-Systems<br>design- Challenges in chemical and<br>biochemical sensing - Application areas<br>-Wearable inertial sensors - obtained<br>parameters from inertial sensors -<br>Applications for wearable motion sensors<br>- Practical considerations for wearable<br>inertial sensor - Application in clinical<br>practice and future scopeWearable<br>haptics: World of wearables - Attributes<br>of wearables - Textiles and clothing: The<br>meta wearable - Challenges and<br>opportunities<br>- Future of wearables - Need for wearable<br>haptic devices - Categories of wearable<br>haptic devices - Categories of wearable<br>haptic and tactile display | 5 | 3 |
|----|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| IV | Wearable<br>Technologi<br>es - Energy<br>Expenditur e<br>and Energy<br>Harvesting                              | Wearable Algorithms, Web of Things –<br>Architecture Standardization, Data<br>Mining for Body Sensor Network.<br>Internet of Things – Embedded Device<br>UX Design.Introduction to surface,<br>surface charge, surface energy,<br>Thermodynamics of surfaces, Fluids in<br>Electrical fields, The Navier Stokes<br>equation, Boundary and Initial conditions<br>problemsEnergy Harvesting Sources,<br>Models, and Circuits, Interface Circuits<br>for Thermoelectric Generator, Polarity<br>Mechanism for<br>Thermoelectric Harvester, Energy<br>scavenging sources for biomedical<br>sensors. Evaluation Methodology of a<br>Smart Clothing Biomechanical Energy<br>Harvesting System for Mountain<br>Rescuers. Thermal Energy Harvesting<br>on the Bodily Surfaces through a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 | 4 |

|   |                                     | Wearable Thermo-Electric Generator.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |
|---|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
|   |                                     | Introduction: History of IIoT,<br>Components of IIoT - Sensors, Interface,<br>Networks, People & Process, Hype cycle,<br>IoT Market, Trends & future Real life<br>examples, Key terms – IoT Platform,<br>Interfaces, API, clouds, Data<br>Management Analytics, Mining &<br>Manipulation; Role of IIoT in<br>Manufacturing Processes Use of IIoT in<br>plant maintenance<br>practices, Sustainability through<br>Business excellence tools Challenges &<br>Benefits in implementing IIoT |   |   |
|   |                                     | Industry 4.0: Globalization, The Fourth<br>Revolution, LEAN Production Systems,<br>Cyber Physical Systems and Next<br>Generation Sensors, Collaborative<br>Platforms and Product Lifecycle<br>Management, Industrial Sensing &<br>Actuation                                                                                                                                                                                                                                              |   |   |
| V | Industrial<br>Internet of<br>Things | Technology and Business outcome based<br>methodology: Big Data Analytics and<br>Software Defined Networks: IIoT<br>Analytics - Introduction, Machine<br>Learning and Data Science, Security and<br>Fog Computing - Fog Computing in IIoT,<br>Security in IIoT                                                                                                                                                                                                                            | 8 | 5 |
|   |                                     | Industrial Manufacturing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|   |                                     | From fibers to textile sensors - Interlaced<br>network -Textile sensors for<br>physiological state monitoring -<br>Biomechanical sensing - Noninvasive<br>sweat monitoring by textile sensors and<br>other applications. FBG sensor in<br>Intelligent Clothing and Biomechanics.                                                                                                                                                                                                         |   |   |
|   |                                     | Wearable and Non-Invasive Assistive<br>Technologies: Human<br>Body Communication for a Data Rate<br>Sensor Network. IIoT– Networking,<br>Wireless Body Area Networks. IIoT –<br>Cloud<br>Computing, Wearable Sensors for                                                                                                                                                                                                                                                                 |   |   |
|   |                                     | Monitoring of Physical and Physiological<br>Changes and for Early<br>Detection of Diseases.                                                                                                                                                                                                                                                                                                                                                                                              |   |   |

| VI | Industrial<br>IoT<br>Applications | <ul> <li>Applications in agriculture: Smart<br/>Farming: Weather monitoring, Precision<br/>farming, Smart Greenhouse, Drones for<br/>pesticides.</li> <li>Applications in IoT enabled Smart Cities:<br/>Energy Consumption Monitoring, Smart<br/>Energy Meters, Home automation, Smart<br/>Grid and Solar Energy Harvesting,<br/>Intelligent Parking, Data lake services<br/>scenarios.</li> <li>Healthcare applications: Architecture of<br/>IoT for Healthcare, Multiple views<br/>coalescence, SBC-ADL to construct the<br/>system architecture. Use Cases :<br/>Wearable devices for Remote monitoring<br/>of Physiological parameters, ECG, EEG,<br/>Diabetes and Blood Pressure.</li> <li>Applications in Manufacturing: Power<br/>Plants Oil, chemical and pharmaceutical<br/>industry, Applications of UAVs in<br/>Industries.</li> </ul> | 10 | 6 |
|----|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|
|----|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|

# Lab Syllabus

Lab Prerequisite: IOT Basics & Smart sensors Laboratory

| Sr.<br>No. | Level<br>1.Basic<br>2.Design<br>3.Advanced<br>4.Project/Cas<br>e<br>Study/Semina<br>r | Detailed Lab/Tutorial Description                                                                                                                                                                                                                      | Hours |
|------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1          | 1                                                                                     | Study of Textile based electrodes as temperature sensors Study<br>of Wearable body temperature sensors.<br>Study of Wearable Galvanic Skin Response monitoring system.<br>Study of Wearable motion sensors using textile based MEMS<br>accelerometers. | 02    |
| 2          | 1                                                                                     | Study of Wearable PPG and SpO <sub>2</sub> monitoring system.<br>Kinematic monitoring using wearable FBG sensors.                                                                                                                                      | 02    |
| 3          | 2                                                                                     | Study of Wearable ECG electrodes:<br>Design and measurement of electrical activity of the heart.<br>Design and measurement of electrical activity of muscle cells.                                                                                     | 02    |
| 4          | 2                                                                                     | Study the process involved in screen printing technology (thick film) and construct a miniaturized Interdigitated comb type electrode (1 mm line width & 1 mm inter electrode gap) which can be used for sensing applications. After developing the    | 02    |

|    |      | electrodes, measure the actual electrode conductivity. The<br>overall printing surface of the electrodes on the substrate can be<br>restricted to one square inch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5  | 2    | Understand the dip coating / spin coating methods (thin film technology) and how they are being used for developing thin films for sensing applications. After the study, deposit a thin film layer of Tin oxide on the screen printed IDT electrodes. Measure the conductivity of the coated thin film using suitable electronic circuits. Based on the observation, propose how it can be used for chemical sensing applications.                                                                                                                                                                                                                                 | 02 |
| 6  | 2    | Pulse oximetry can be a useful aid in decision-making,<br>everyone's oxygen saturation fluctuates, due to changing<br>activities and health conditions. Design a circuit to determine<br>oxygen range, and record each measurement in the activity log.<br>A SpO2 of greater than 95% is generally considered to be<br>normal. If SpO2 of 92% or less (at sea level) indicates the<br>condition using an alarm. Use two led sources and two<br>detectors to measure the saturation of oxygen in the test subject.                                                                                                                                                   | 02 |
| 7  | 3    | Anti-collision systems are preferred for all the automotive<br>systems to improve the passenger safety. Using the Doppler<br>effect as the detection principle, develop an anti-collision system<br>using ultrasonic transceivers                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02 |
| 8  | 3, 4 | Tire Pressure Monitoring Systems use a wireless radio frequency<br>signal to communicate the tire pressure from sensors inside the<br>wheel to a receiver centrally located in the vehicle. The sensors<br>are powered by batteries that eventually wear out, so the<br>amplitude of the transmitted signal is minimized in order to<br>conserve power. Unfortunately, this has resulted in unreliable<br>communication and it is not uncommon to lose communication<br>with the sensors resulting in a false low-pressure indication.<br>Develop a better way of sending RF signals from the wheels to<br>the vehicle to conserve power and improve communication. | 02 |
| 9  | 3, 4 | Develop a suitable electrochemical cell which can distinguish<br>normal and contaminated water samples. Cyclic voltammetry<br>technique can be used as the detection method. Develop the<br>electronic circuitry and display to indicate the type of water                                                                                                                                                                                                                                                                                                                                                                                                          | 02 |
| 10 | 3    | Cloud Platforms: Microsoft Azure/IBM Bluemix<br>Language: Python 1. Pushing documents 2. Pushing<br>Images and Processing 3. Mini Weather Station 4. Image<br>analytics at cloud 5. Python Scikit learn 6. Tensor flow 7. Live<br>video                                                                                                                                                                                                                                                                                                                                                                                                                             | 02 |

# Software Requirements:

LabVIEW, Microsoft Azure, IBM Bluemix

# Hardware Requirements:

Microcontroller prototyping boards, GPRS/ GSM Modules, Zigbee modules, Ethernet Shield, LoRaWAN module, LabVIEW DAQ and peripherals

#### **Theory Assessment:**

#### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

#### **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

1. Term workAssessment: At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorial and mini-projects (if included) are graded from time to time.

**2. Oral/Viva Assessment**: The practical and oral examination will be based on entire syllabus.

#### **Text Books:**

- 1. "Seamless Healthcare Monitoring", Toshiyo Tamura and Wenxi Chen, Springer 2018
- 2. "Wearable Sensors -Fundamentals, Implementation and Applications", by Edward Sazonov and Michael R. Neuman, Elsevier Inc., 2014.
- 3. "Wearable and Autonomous Biomedical Devices and Systems for Smart Environment", by Aimé Lay-Ekuakille and Subhas Chandra Mukhopadhyay, Springer 2010
- 4. Michael J. McGrath, Cliodhna Ni Scanaill, Dawn Nafus, "Sensor Technologies: Healthcare, Wellness and Environmental Applications", 201, 1st Edition, Apress Media LLC, New York.
- 5. William S. Wong, Alberto Salleo, Flexible Electronics: Materials and Applications, 2011, 1st Edition, Springer, New York.
- Edward Sazonov, Michael R. Neuman (editors), Wearable Sensors: Fundamentals, Implementation and Applications, 2014, Academic Press/Elsevier, ISBN 978-0124186620
- Honbo Zhou, Internet of Things in the Cloud A Middleware Perspective, 2012, CRC Press, ISBN 978-1439892992
- Claire Rowland, Elizabeth Goodman, Martin Chalier, Ann Light, Alfred Lui, Designing Connected Products: UX for the Consumer Internet of Things, 2015, O'Reilly Media, Inc, ISBN 978-1449372569
- 9. John Dean, Web Programming with HTML5, CSS and JavaScript, 2018, Jones and Bartlett Publishers Inc., ISBN-10: 9781284091793
- 10. DiMarzio J. F., Beginning Android Programming with Android Studio, 2016, 4th ed., Wiley, ISBN-10: 9788126565580

#### **References:**

- 1. "Wearable Electronics Sensors For Safe and Healthy Living", Subhas Chandra Mukhopadhyay, Springer 2015
- "Environmental, Chemical and Medical Sensors", by Shantanu Bhattacharya, A K Agarwal, NripenChanda, Ashok Pandey and Ashis Kumar Sen, Springer Nature Singapore Pte Ltd. 2018
- 3. M. Mardonova and Y. Choi, "Review of Wearable Device Technology and Its Applications to the Mining Industry," Energies, vol. 11, p. 547, 2018.
- N. Luo, W. Dai, C. Li, Z. Zhou, L. Lu, C. C. Y. Poon, et al., "Flexible Piezoresistive Sensor Patch Enabling Ultralow Power Cuffless Blood Pressure Measurement," Advanced Functional Materials, vol. 26, pp. 1178-1187, 2016.
- 5. S. Yang, Y.-C. Chen, L. Nicolini, P. Pasupathy, J. Sacks, B. Su, et al., "Cut-and-Paste" Manufacture of Multiparametric Epidermal Sensor Systems," Advanced Materials, vol. 27, pp. 6423-6430, 2015.
- 6. Edward Sazonov, Michael R. Newman, "Wearable Sensors: Fundamentals, Implementation and Applications", 2014, 1st Edition, Academic Press, Cambridge.
- 7. Kate Hartman, "Make: Wearable Electronics: Design, prototype, and wear your own interactive garments", 2014, 1st Edition, Marker Media, Netherlands.
- 8. Guozhen Shen, Zhiyong Fan, "Flexible Electronics: From Materials to Devices", 2015, 1st Edition, World Scientific Publishing Co, Singapore.
- 9. Yugang Sun, John A. Rogers, "Semiconductor Nanomaterials for Flexible Technologies: From Photovoltaics and Electronics to Sensors and Energy Storage (Micro and Nano Technologies)", 2011, 1st Edition, William Andrew, New York.
- 10. Fadi Al-Turjman, Intelligence in IoT- enabled Smart Cities, 2019, 1st edition, CRC Press, ISBN-10: 1138316849
- 11. Giacomo Veneri, and Antonio Capasso, Hands-on Industrial Internet of Things: Create a powerful industrial IoT infrastructure using Industry 4.0, 2018, Packt Publishing.
- 12. Subhas Chandra Mukhopadhyay, Smart Sensing Technology for Agriculture and Environmental Monitoring, 2012, Springer, ISBN-10: 3642276377

| Subject Code | Subject Name                | Total |
|--------------|-----------------------------|-------|
| ET 406       | Communication System Design | 04    |
|              | and Integration             | • •   |

### **Prerequisite:**

Mobile Communication Systems, Robotics, Microcontroller, Antenna, Microwave Engineering

### **Course Objectives:**

- 1. Understand protocol processing systems.
- 2. Study basics of Drone technology.
- 3. Understand the fundamentals of Digital SLR camera System.
- 4. Inculcate the software and hardware integration in mobile system.
- 5. Understand the design considerations of RF transceiver system.
- 6. Inculcate the techniques to analyze the performance of real time systems.

### Course Outcomes: Six (Based on Bloom's Taxonomy)

1. Explain the computer communication principles: Protocols, Architecture and multimedia and optical networking.

- 2. Describe working principle and application of drone technology.
- 3. Describe working principle and application of DSLR system.
- 4. Identify and explain the software and hardware integration in mobile system.
- 5. Describe the design considerations of RF transceiver system.
- 6. Demonstrate the techniques to analyze the performance of real time systems.

# **Theory Syllabus:**

| Sr.<br>No. | Module                               | Detailed Content                                                                                                                                                                                                                                                                                                                                                     | Hours | CO<br>Mapping |
|------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Computer<br>Communic<br>ation System | <ul> <li>Protocol processing Systems :Network processing hardware, Basic packet processing algorithms.</li> <li>Protocol Software, Switching Fabrics SONET-DWDM ,DSL ,ISDN ,ATM</li> <li>Multimedia Networking: Protocols for real time interactive application-RSVP ,Network Requirements for Audio/ Video Transform, Multimedia Coding and Compression.</li> </ul> | 6     | CO1           |

| Π  | Drone<br>System                                    | Introduction to UAVs, Classification of UAVs,<br>Drones / Qcadquaptors Working Principle and<br>Design, Sensors used in drones & Calibration<br><b>PID Controller Implementation and Tuning,</b><br>Flight controller, Remote Controller, Quadcopter<br>dynamics<br><b>Applications of UAVs</b> in various fields Land<br>surveying, Urban city planning, Agriculture,<br>Disaster management | 6 | CO2 |
|----|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| ш  | DSLR<br>System                                     | Introduction to digital SLR cameras and<br>Photography, DSLR block diagram, DSLR<br>features, Memory Cards and Storage, Selection of<br>lenses, Camera controls.                                                                                                                                                                                                                              | 5 | CO3 |
| IV | Mobile<br>System                                   | Introduction to mobile system, Introduction to<br>mobile software's: Android, IOS, Introduction to<br>mobile app development<br>Introduction to mobile hardware's: Bluetooth,<br>Wi-Fi, GPS, Accelerometer, Camera,<br>Fingerprints sensors<br>Hardware and software integration                                                                                                              | 9 | CO4 |
| v  | RF<br>Transceiver<br>Design                        | Communication System Requirements, Selection<br>of Circuits and Components, Design and<br>integration of transmitting Antenna, Amplifier,<br>Filters, Oscillator, Mixer, Phase locked loop,<br>Receiver requirements, Link budget analysis,<br>Design of LNA and its integration Antenna, filter,<br>oscillator and mixer, Image rejection techniques                                         | 9 | CO5 |
| VI | Performanc<br>e Analysis<br>of Real time<br>System | EMI-EMC issues, Fading, Validation of prototype, Open air testing                                                                                                                                                                                                                                                                                                                             | 4 | CO6 |

# **Theory Assessment:**

# **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

#### End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## **Text Books:**

- 1. David M Pozar, Microwave Engineering, John Wiely and Sons, 2005
- 2. Ludwig R. and Bogdanov G, RF Circuit Design, Prentice Hall, 2007.

3. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiely and Sons, 2005

4. W. Prasad Kodali, "Engineering Electromagnetic Compatibility: Principles, Measurements, Technologies, and Computer Models", 2nd Edition, ISBN: 978-0-7803-4743-4, January 2001, Wiley-IEEE Press

### **References:**

- 1. Theory, Design, and Applications of Unmanned Aerial Vehicles- by A. R. Jha Ph.D. (Author), 2016
- Handbook of Unmanned Aerial Vehicles- Editors: Valavanis, K., Vachtsevanos, George J. (Eds.), 2014.
- 3. Guillermo Gonzalez, 'Microwave Transistor Amplifiers Analysis and Design', Prentice Hall, 2<sup>nd</sup> Edition.
- 4. Devendra Misra, 'Radio Frequency and Microwave Communication Circuits-Analysis and Design', John Wiley & Sons, 2<sup>nd</sup> Edition.
- 5. Ramesh Garg, InderBahl and Maurizio Bozzi, "Microstrip Lines and Slot Lines, Artech House, 3<sup>rd</sup> Edition.

| Subject Code | Subject Name                | Total |
|--------------|-----------------------------|-------|
| ET 407       | Speech and Audio Processing | 04    |

# Prerequisite: Signals and Systems, Digital Time Signal Processing

# **Course Objectives: Six**

1. To understand basic concepts and methodologies for the analysis and modeling of speech signals.

2. To characterize the speech signal as generated by a speech production model.

3. To understand the digital representation of the speech waveform.

4. To perform the analysis of speech signals using STFT.

5. To extract the information of the speech or audio signals.

6. To provide a foundation for developing applications in this field.

# Course Outcomes: Six (Based on Bloom's Taxonomy)

After successful completion of the course student will be able to

1. Demonstrate advanced Knowledge in Digital model representation of speech signals.

2. Design and implement algorithms for processing speech and audio signals

considering the properties of acoustic signals and human hearing.

3. Analyze speech signals to extract the characteristics of vocal tract (formants) and vocal cords (pitch).

4. Formulate and design a system for speech recognition and speaker recognition.

5. Acquired knowledge about audio and speech signal estimation and detection.

| Sr.<br>No. | Module                                                     | Detailed Content                                                                                                                                                                                                                                                            | Hours | CO<br>Mapping |
|------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Fundamentals<br>of Human<br>speech<br>production<br>system | <ul> <li>1.1 Review of digital signal and systems,<br/>Transforms representations of<br/>signal and systems,</li> <li>1.2 Speech production and acoustic<br/>tube modelling, anatomy, and<br/>physiology of the vocal tract and ear,<br/>hearing and perception.</li> </ul> | 6     | 1             |

# **Theory Syllabus**

| Π  | Digital Models<br>for Speech<br>signals             | 2.1 Articulatory phonetics, acoustic<br>phonetics, discrete time model for speech<br>production                                                                                                                                                                                                                                                | 4 | 2 |
|----|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| ш  | Time domain<br>analysis of<br>speech<br>processing, | <ul> <li>3.1 Time energy, average magnitude, and zero-crossing rate, speech vs silence discrimination</li> <li>3.2 Short-time autocorrelation, pitch period estimation using short-time autocorrelation, median smoothing</li> </ul>                                                                                                           | 8 | 3 |
| ш  | Frequency<br>domain<br>representations<br>,         | <ul> <li>4.1 Time dependent Fourier representation for voiced and unvoiced speech signals, linear filtering interpretation, spectrographic displays</li> <li>4.2 Pitch period estimation based on FFT and harmonic peak detection method, estimation of formants using log spectrum</li> </ul>                                                 | 8 | 4 |
| IV | Homomorphic<br>Speech<br>Processing                 | <ul> <li>5.1 Cepstral analysis of speech, mel<br/>frequency cepstral coefficients (MFCC),<br/>perceptual linear prediction (PLP)</li> <li>5.2 Pitch period estimation in cepstral<br/>domain, evaluation of formants using<br/>cepstrum</li> </ul>                                                                                             | 7 | 5 |
| VI | Speech and<br>Audio<br>Processing                   | <ul> <li>6.1 Vocoder- Voice excited channel vocoder,</li> <li>Voice excited and error</li> <li>signal excited LPC vocoders. Adaptive</li> <li>predictive coding of speech,</li> <li>Auditory Modeling. Audio signal processing</li> <li>for Music applications.</li> <li>Speech recognition pattern comparison</li> <li>techniques.</li> </ul> | 6 | 6 |

# Lab Syllabus

Lab Prerequisite: Knowledge of MATLAB/SCILAB

| Level1. Basic2. Design3. Advanced4. Project/CaseStudy/Seminar | Detailed Lab/Tutorial Description | Hours |
|---------------------------------------------------------------|-----------------------------------|-------|
|---------------------------------------------------------------|-----------------------------------|-------|

| 1  | 1 | To implement a program to generate basic signals                                                                 | 02 |
|----|---|------------------------------------------------------------------------------------------------------------------|----|
| 2  | 2 | To implement a program to read and play Audio file                                                               | 02 |
| 3  | 2 | To implement a program to concatenate speech signals                                                             | 02 |
| 4  | 2 | To implement a program to concatenate into a stereo file                                                         | 02 |
| 5  | 3 | To implement a program to find<br>resonating frequency of a tuning fork<br>using Autocorrelation method          | 02 |
| 6  | 2 | Program to find effect of length of<br>window on Short Time<br>Autocorrelation Function.                         | 02 |
| 7  | 2 | To implement a program, to compute<br>short time energy of audio file using<br>various windows.                  | 02 |
| 8  | 2 | To implement a program to compare<br>spectrum of Voiced and Unvoiced<br>Speech segments using Hamming<br>window. | 02 |
| 9  | 3 | To implement stereo to mono conversion                                                                           | 02 |
| 10 | 3 | To implement an application of<br>Speech processing                                                              | 02 |

Software Requirements: MATLAB/SCILAB

**Theory Assessment:** 

# **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

# Lab Assessments:

1. Term workAssessment: At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall

performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

**2. Oral/Viva Assessment** :The practical and oral examination will be based on the entire syllabus.

# **Text Books:**

- 1. L R Rabiner and S W Schafer, —Digital processing of speech signals, Pearson Education,2009.
- 2. Shaila D. Apte, —Speech and Audio Processing Wiley India, New Delhi, 2012.

# **Reference Books**

1. Thomas F Quateri, — Discrete Time Speech Signal Processing — Pearson Edition, 2006.

2. Ben Gold and Nelson Morgan, -Speech & Audio Signal Processing, wiley, 2007.

Douglas O Shaughnessy, -Speech Communications, 2nd Edition, Oxford university press, 2000

| Subject Name      | Total |
|-------------------|-------|
| Radar Engineering | 04    |
|                   |       |

#### **Prerequisite:**

Electronic Communication Systems

Antenna and Wave Propagation

### **Course Objectives:**

- 1. Learn the basic terminology and concept of Radar
- 2. Interprete Radar equation , in presence of noise
- 3. Understand Different types of Radar
- 4. Analyze Tracking Radar
- 5. Requirements for Radar transmitter and Receivers
- 6. Design Consideration of Advance Radar Systems

### **Course Outcomes:**

- 1. Define terms used in Radar and Tabulate Radar Frequencies
- 2. Interpret the equation of Radar Range in varying Conditions
- 3. Describe and compare various types of Radar
- 4. Analyze working of Tracking Radar
- 5. Evaluate the performance of Radar Transmitters and Receivers
- 6. Explain the advance applications of Radar

#### **Theory Syllabus**

| Sr.<br>No. |                                       | Detailed Content                                                                                                                        | Hours | CO<br>Mapping |
|------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Basics of<br>RADAR                    | RADAR- definition, Terms in RADAR ,<br>Frequencies used, Block Diagram,<br>Applications of Radar                                        | 4     | CO1           |
| П          | Mathematical<br>Modelling of<br>Radar | Detection of signal in noise, Receiver Noise<br>and Signal-to-noise Ratio, Probability of<br>detection and false alarm: Simple, complex | 6     | CO2           |

|    |                                        | Targets,PulseRepetitionFrequency,Integration of Pulses ,                                                                                                                                                                                             |    |     |
|----|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| ш  | MTI and Pulse<br>Doppler Radar         | Introduction to Doppler and MTI radar,<br>Doppler frequency shift, Simple CW Doppler<br>radar, MTI radar block diagram, Delay line<br>canceler ,Moving-target-detection Pulse<br>Doppler radar                                                       | 8  | CO3 |
| IV | Tracking<br>Radar                      | Monopulse tracking , Conical scan and sequential lobbing , Limitation of tracking accuracy , Low angle tracking                                                                                                                                      | 6  | CO4 |
| v  | Radar<br>Transmitters<br>and Receivers | Radar RF power sources: Klystron, Travelling<br>wave tube, Magnetron, CFA, low power<br>transmitter, high power transmitter, Radar<br>Receivers : Receiver noise figure ,<br>Superheterodyne Receiver , Types of<br>displays, Antennas used in Radar | 10 | CO5 |
| VI | Advance<br>Radar Systems               | LORAN,DECCA, Instrumentation Landing<br>System,Synthetic Aperture Radar-SAR                                                                                                                                                                          | 5  | CO6 |

# Lab Syllabus

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/<br>Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                          | Hours |
|------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------|
| 1          | Basic                                                                                 | To demonstrate the elements in the RADAR system                            | 02    |
| 2          | Basic                                                                                 | Use Doppler RADAR to detect the maximum range.                             | 02    |
| 3          | Basic                                                                                 | Determine the velocity of the moving objects with the help of RADAR range. | 02    |
| 4          | Basic                                                                                 | Use RADAR system to measure the distance traveled by any object.           | 02    |
| 5          | Design                                                                                | Simulation experiment on Matlab/Scilab                                     | 02    |
| 6.         | Design                                                                                | Simulation experiment on Matlab/Scilab                                     | 02    |
| 7          | Project/Case<br>Study/Seminar                                                         | Design a RADAR system( PBL)                                                | 02    |
| 8          | Project/Case<br>Study/ <b>Seminar</b>                                                 | Seminar on Recent Advancements in RADAR                                    | 02    |

# **Theory Assessment:**

## **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

## End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

### Lab Assessments:

1. Term workAssessment: At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

**2. Oral/Viva Assessment** :The practical and oral examination will be based on entire syllabus.

# **Text Books:**

1)MerillSkolnik,—"IntroductiontoRADARSystems", Tata McGrawHill, Third Edition

2)MerillSkolnik,-Radar Handbook, Tata Mcgraw Hill, Second Edition

# **References:**

1. Mark A.Richards, James A.Scheer, William A.Holm, —Principles of Modern Radar Basic Principals, ScitechPublishing.

2. SimonKingsley, ShaunQuegon, —UnderstandingRadarSystems , ScientechPublishing Inc.
3. G.S. N.Raju, —Radar Engineering and Fundamentals Of Navigational Aids, I. K International publishing House Pvt.Ltd

| Subject Code | Subject Name                 | Total |
|--------------|------------------------------|-------|
| ET 409       | <b>Optical Communication</b> | 04    |

#### **Prerequisite:**

Analog and Digital Communication, Physics, Electromagnetic Engineering

### **Course Objectives:**

- 1. List, write and explain fundamentals and transmission characteristics of optical fiberCommunication.
- 2. List, write and explain the design of Optical Fiber(OF) Component Material, it's fabrication, connectors, splicers to vary length of OF.
- 3. List, write and explain fundamentals and transmission characteristics of optical fiber communication.
- 4. List, write and explain principles and characteristics of various sources, detectors and various fiber optic components.
- 5. List, write and explain principles and characteristics of various sources, detectors and various fiber optic components.
- 6. Calculate parameters for optical link budgeting and analyze the link.

## **Course Outcomes:**

- 1. Analyze the fundamental principle of optical fiber communication.
- 2. Apply the fundamental principles of optics and light waves to design optical fiber communication.
- 3. Design optical fiber communication links using appropriate components like optical fiber, light source, detectors, connectors, splicers, etc.
- 4. Explore concepts of designing and operating principles of optical fiber communication.
- 5. Apply the knowledge developed in class to contemporary research and industrial areas.
- 6. Design simple and basic optical fiber communication system with various basic faults, configurations, techniques in mind.

#### Theory Syllabus

| Sr.<br>No. | Module                                        | Detailed Content                                                                                                                                                                | Hours | CO<br>Mapping |
|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Overview of<br>Optical Fiber<br>Communication | <ul><li>1.1-Historical development, general system, advantages, disadvantages, and applications of optical fiber communication,</li><li>1.2-Optical fiber waveguides,</li></ul> | 08    | CO1           |

|    |                                 | 1.3-Ray theory, cylindrical fiber (no derivations), single mode fiber, cutoff wavelength, and mode field diameter.                                                                                                                                                                                                                                                  |    |     |
|----|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| П  | Fiber Optic<br>Technology       | <ul><li>2.1-Fiber materials,</li><li>2.2-Fiber fabrication,</li><li>2.3-Fiber optic cables, couplers, splices,</li><li>connectors</li></ul>                                                                                                                                                                                                                         | 06 | CO2 |
| ш  | Transmission<br>Characteristics | 3.1Attenuation, absorption, linear and<br>nonlinear scattering losses, bending losses,<br>3.2-Modal dispersion, waveguide dispersion,<br>dispersion and<br>3.3-Pulse broadening, dispersion shifted and<br>dispersion flattened fibers.                                                                                                                             | 07 | CO3 |
| IV | Optical Sources                 | <ul> <li>4.1-Working principle and characteristics of sources (LED, LASER),</li> <li>4.2- Tunable lasers Quantum well lasers ,</li> <li>4.3-Charge capture in Quantum well lasers,</li> <li>Multi Quantum well Laser diodes,</li> <li>4.4-Surface Emitting Lasers: Vertical cavity</li> <li>Surface Emitting Lasers</li> </ul>                                      | 06 | CO4 |
| v  | Optical<br>Detectors            | <ul> <li>5.1-Working principle and characteristics of detectors (PIN, APD),</li> <li>5.2-Material requirement for RCEPD, Resonant cavity enhancement (RCE) Photo Detector,</li> <li>5.3-Noise analysis in detectors,</li> <li>5.4-Coherent and non-coherent detection, receiver structure, bit error rate of optical receivers, and receiver performance</li> </ul> | 06 | CO5 |
| VI | Optical Fiber<br>Systems        | <ul> <li>6.1-Introduction,</li> <li>6.2-Point to point links,</li> <li>6.3-System considerations, link power budget, and rise time budget.</li> <li>6.4-RF over fiber, key link parameters,</li> <li>6.5-Radio over fiber links, microwave photonics</li> </ul>                                                                                                     | 06 | CO6 |

# Lab Syllabus

# Lab Prerequisite:

• Analog and Digital Communication, Physics, Electromagnetic Engineering

| Sr.<br>No. | Level 1. Basic 2. Design 3. Advanced | Detailed Lab/Tutorial Description | Hours |  |
|------------|--------------------------------------|-----------------------------------|-------|--|
|------------|--------------------------------------|-----------------------------------|-------|--|

| 1  | 1 | To study optic fiber analog link.                                                        | 02 |
|----|---|------------------------------------------------------------------------------------------|----|
| 2  | 1 | To set up fiber optic analog link.                                                       |    |
| 3  | 1 | To study propagation loss in fiber optic.                                                | 02 |
| 4  | 2 | To study Bending loss.                                                                   | 02 |
| 5  | 2 | To measure Numerical Aperture.                                                           | 02 |
| 6  | 3 | To determine cutoff wavelength, responsivity and incident optical power by using SCILAB. | 02 |
| 7  | 3 | Comparison of acceptance angle for meridional & skew rays using SCILAB.                  |    |
| 8  | 2 | Determination of Quantum efficiency of photo diodes using SCILAB.                        |    |
| 9  | 2 | To determine the outer diameter of the Optical fiber in micrometer using SCILAB.         | 02 |
| 10 | 2 | To determine the multiplication factor of the Photodiode using SCILAB.                   | 02 |
| 11 | 4 | Design a Optical fiber case study 1.                                                     | 02 |
| 12 | 4 | Design a Optical fiber with given parameters - case study 2.                             | 02 |

# Software Requirements: Scilab or Matlab

# Hardware Requirements: Optical Communication kit

#### **Theory Assessment:**

#### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

#### **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

1. **Termwork:** At least 08 Experiments covering the entire syllabus must be given during the " Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four student term work assessment must be based on the overall performance of the student with every experiment graded from time to time

2. **Oral/Viva :** Practical and Oral exams will be based on the entire syllabus.

# Textbooks:

1. Optical Fiber Communication - John Senior Prentice Hall of India Publication.

2. Optical Fiber Communication - Gred Keiser Mc- Graw Hill Publication.

# **References:**

- 1. Fiber Optic Communication Djafar K. Mynbarv, Lowell L. Scheiner.
- 2. Optical Fiber Communication Selvarajan, Subartkar, T. Srinivas Tata Mc-Graw Hill Publication.
- 3. Fundamentals of Fibre Optics in Telecommunication and sensor System, PalB.P., New Age International
- 4. Fiber Optic Communication, Agrawal, 3rd edi, Wiley
- 5. Fibre optics and Optoelectronics by Khare,Oxford University Press
- 6. Rajappa Papannareddy, Lightwave Communication Systems: A Practical Perspective, Penram International Publishing

| Subject Code | Subject Name                  | Total |
|--------------|-------------------------------|-------|
| ET 410       | Advanced Network Technologies | 04    |

**Prerequisite:** Computer Communication Network Concepts **Course Objectives:** 

1. To make students familiar with data communication technologies and how to use

them to Design, Implement, Operate, Manage enterprise networks.

2. To introduce the concept of wireless WAN, WAP and different IEEE standards.

# **Course Outcomes:**

On completion of the course, students should be able to:

1. Explain optical networking technology and its applications

2. Set up WLAN, PAN

3. Understand Mobile Networks.

4. Understand WANS: ATM and Frame Relay

5.Determine the network performance using monitor tools.

6.Computing the quality of service for desired applications

# **Theory Syllabus**

| Sr.<br>No. | Module                | Detailed Content                                                                                                                 | Hours | CO<br>Mapping |
|------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| 1          | Optical<br>Networking | SONET/SDH standards<br>DWDM<br>Performance and Design Considerations                                                             | 04    | CO1           |
| 2          | Wireless LANs         | IEEE 802.11 Architecture , MAC sublayer,<br>Addressing mechanism, Physical Layer<br>Bluetooth -Architecture and Bluetooth layers | 08    | CO2           |

|   |                                                     | Mobile computing Architecture: Three Tier<br>Architecture for Mobile computing, Design<br>considerations, Mobile computing through<br>Internet                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |
|---|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 3 | Mobile<br>Networks                                  | Mobile IP: Goals, assumptions and<br>requirements, Entities and Terminology, IP<br>packet delivery, Agent advertisement and<br>discovery, Registration, Tunneling and<br>Encapsulation, Optimizations, Reverse<br>tunneling, IPv6, Dynamic host configuration<br>protocol, Ad hoc networks MANET:<br>ROUTING, DESTINATION SEQUENCE<br>DISTANCE VECTOR,<br>Dynamic source routing, Hierarchical<br>algorithms, Alternative metrices.                                                                                                                               | 06 | CO3 |
| 4 | WAN<br>Technologies                                 | ATM: Faces of ATM, ATM Protocol<br>operations. (ATM cell and Transmission)<br>ATM Networking basics, Theory of<br>Operations, B-ISDN reference model, PHY<br>layer, ATM Layer (Protocol model), ATM<br>layer and cell ,Traffic Descriptor and<br>parameters, Traffic Congestion control<br>defined, AAL Protocol model, Traffic<br>contract and QoS, User Plane overview,<br>Control Plane AAL, Management Plane, Sub<br>S3 ATM,ATM public services<br>Frame relay concept, FR specifications, FR<br>design and VoFR and Performance and<br>design considerations | 10 | CO4 |
| 5 | Network<br>Design                                   | Network layer design<br>Access layer design<br>Access network capacity,<br>Network topology and Hardware and<br>Completing the access network design                                                                                                                                                                                                                                                                                                                                                                                                              | 05 | CO5 |
| 6 | Traffic<br>Engineering<br>and Capacity<br>Planning: | Traffic Engineering Basics: Traffic<br>Characteristics and Source Models, Poisson<br>Arrivals and Markov Processes<br>Voice Traffic Modelling (Erlang Analysis)<br>Queued Data and Packet Switched Traffic<br>Modeling<br>Lan Traffic Modelling, Queuing System<br>Models Notation, Markovian Queuing<br>System Models,Bernoulli Processes and<br>Gaussian Approximation                                                                                                                                                                                          | 06 | CO6 |

## Lab Syllabus

### Lab Prerequisite:

Computer Communication Network, Basic Networking Knowledge.

Software Requirements: NS2, WireShark

Hardware Requirements: Routers. Cables, Switches, Servers.

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project<br>/Case<br>Study/Seminar | Detailed Lab/Tutorial Description                                                                                                                                     | Hours |
|------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1          | Basic                                                                                 | Learn to use commands like tcpdump, netstat, ifconfig,<br>nslookup and traceroute. Capture ping and traceroute<br>PDUs using a network protocol analyzer and examine. | 02    |
| 2          | Design                                                                                | Setting up a Bluetooth Network                                                                                                                                        | 02    |
| 3          | Design                                                                                | Setting up a ZigBee Network                                                                                                                                           | 02    |
| 4          | Design                                                                                | Simulating a Wireless Sensor Network                                                                                                                                  | 02    |
| 5          | Advanced                                                                              | Simulating a Mobile Adhoc Network                                                                                                                                     | 02    |
| 6          | Advanced                                                                              | Simulating a WiMAX Network                                                                                                                                            | 02    |
| 7          | Advanced                                                                              | Measuring Network Performance                                                                                                                                         | 02    |

#### **Theory Assessment:**

#### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

### End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Lab Assessments:

1. Term workAssessment: At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

**2. Oral/Viva Assessment** :The practical and oral examination will be based on the entire syllabus.

# Textbooks

1. Data Network Design by Darren Spohn, 3e McGraw Hill publications

2. Communication Networks by Leon-Garcia and Indra Widjaja, 2e, Tata McGraw-Hill Publications.

#### **Reference Books**

1. Behrouz A Forouzan, Data communications and Networking 4th Edition, 6. McGraw-Hill Publication.

2. William Stallings, Data Computer Communications, Pearson Education

| Course<br>Code | Course Name                  | Scheme        | Theory | Practical | Tutorial | Total |
|----------------|------------------------------|---------------|--------|-----------|----------|-------|
| IL 470         | E Commerce and<br>E Business | Contact Hours | 3      | -         | -        | 3     |
|                | E Dusiness                   | Credits       | 3      | -         | -        | 3     |

| Course    | Course Name                  | Examination Scheme  |      |         |            |      |           |      |       |  |
|-----------|------------------------------|---------------------|------|---------|------------|------|-----------|------|-------|--|
| Code      |                              | Theory Marks        |      |         |            | Term | Practical | Oral | Total |  |
|           |                              | Internal Assessment |      |         | End<br>Sem | Work |           |      |       |  |
|           |                              | IA 1                | IA 2 | Average | Exam       |      |           |      |       |  |
| IL<br>470 | E Commerce<br>and E Business | 40                  | 40   | 40      | 60         | -    | -         |      | 100   |  |

#### **Objectives:**

- 1. To understand the factors needed in order to be a successful in ecommerce
- 2. Identify advantages and disadvantages of technology choices such as merchant server software and electronic payment options.
- 3. Analyse features of existing e-commerce businesses, and propose future directions or innovations for specific businesses.

# Outcomes: Learner will be able to...

- 1. Appreciate the global nature and issues of electronic commerce as well as understand the rapid technological changes taking place.
- 2. Define and differentiate various types of E-commerce
- 3. Discuss various E-business Strategies.

# **Theory Syllabus**

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1      | <b>E-commerce system:</b> Introduction- scope of electronics commerce, definition of e-commerce, difference between e-commerce and e-business, business models of e-commerce transactions. E-commerce infrastructure: client server technology, two tier client server architecture for e-commerce, drawbacks, three tier architecture for e-commerce.                                                                                                        | 8   |
| 2      | <b>Business strategies for e-commerce:</b> Introduction- elements of e-<br>commerce strategy, simplicity, mobile responsiveness, choosing e-<br>commerce store platform, user-based focus, compliance and security<br>measures, e-commerce strategy: strategy overview, strategy task,<br>technology issues. Case study: Flipkart v/s Amazon, competitive edge,<br>marketing strategy, sales strategy                                                         | 8   |
| 3      | <b>Design of E-commerce systems:</b> e-commerce types- electronic<br>market, electronics data interchange EDI, modeling of e-commerce<br>system, three tier component model of e-commerce system,<br>e-commerce system design- data model, web modeling, database<br>structure design, process model, user friendly design of e-commerce<br>site.                                                                                                             | 7   |
| 4      | <b>Technologies for e-commerce systems:</b> Introduction- technologies for e-commerce, PHS and Javascript, SEO, Social Plugins, payment processes, SSL Encryption, hosting server, Service oriented architecture.                                                                                                                                                                                                                                             | 7   |
| 5      | <b>Scalability of e-commerce systems:</b> Web scalability- Vertical scalability , horizontal scalability, Load balancing- working of load balancers, global server load balancers, cloud load balancing- goals of cloud balancing, automated cloud balancing. web caching and buffering                                                                                                                                                                       | 6   |
| 6      | <b>E-commerce system implementation:</b> E-commerce implementation, -<br>website testing, web maintenance, web advertisement, copyright<br>services, SMS alert services, bulk email services, Web personalization-<br>techniques for gathering information, analysis techniques for website<br>personalization, domain name registration and web hosting- different<br>types of web hosting, different components of web hosting, features in<br>web hosting. | 6   |

#### **Theory Assessment:**

## **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### **References:**

- 1. Electronic Business and Electronic Commerce Management, 2nd edition, Dave Chaffey, Prentice Hall, 2006
- 2. Elias. M. Awad, "Electronic Commerce", Prentice-Hall of India Pvt Ltd.
- **3.** E-Commerce Strategies, Technology and applications (David Whitley) Tata McGrawHill
- 4. E-business- theory and practise, BrahmCanzer, cengage learning
- 5. Secure e-commerce systems (Kindle edition), Amazon publishing, P S Lokhande, B BMeshram, first edition

| Course Code | Course Name               | Credits |
|-------------|---------------------------|---------|
| IL 471      | <b>Business Analytics</b> | 3       |

Syllabus Under Preparation

| Course<br>Code | Course Name                   | Scheme        | Theory | Practical | Tutorial | Total |
|----------------|-------------------------------|---------------|--------|-----------|----------|-------|
| IL 472         | Biomedical<br>Instrumentation | Contact Hours | 3      | -         | -        | 3     |
|                |                               | Credits       | 3      | -         | -        | 3     |

| Course | Course Name                   | Examination Scheme |      |         |             |      |           |      |       |  |
|--------|-------------------------------|--------------------|------|---------|-------------|------|-----------|------|-------|--|
| Code   |                               | Theory Marks       |      |         |             | Term | Practical | Oral | Total |  |
|        |                               | Inter              |      |         | End         | Work |           |      |       |  |
|        |                               | IA 1               | IA 2 | Average | Sem<br>Exam |      |           |      |       |  |
| IL 472 |                               | 40                 | 40   | 40      | 60          | -    | -         |      | 100   |  |
|        | Biomedical<br>Instrumentation |                    |      |         |             |      |           |      |       |  |

## **Objectives:**

- 1. To familiarize students with various aspects of measuring electrical parameters from the living body.
- 2. To introduce students with the characteristics of medical instruments and related errors.
- 3. To illustrate various types of amplifiers used in biomedical instruments.
- 4. To familiarize students with biomedical recording devices.
- 5. To introduce students with patient monitoring systems & their characteristics.

Outcomes: Learner will be able to...

- 1. Safely and effectively use biomechanics instrumentation and equipment to record and assess human and object motion.
- 2. Describe and characterize the origin of bio-potentials and inspect common biomedical signals by their characteristics features
- 3. Understand the basic instrumentation system with their limitations & familiarize with pc based medical instrumentation & control of medical devices.
- 4. Describe and characterize medical instruments as per their specifications, static & dynamic characteristics and understand data acquisition system
- 5. Describe, analyze, characterize and design bio-potential amplifiers and design various medical recording systems & their components.
- 6. Understand and describe patient monitoring systems and its necessity in healthcare

system.

## **Theory Syllabus**

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1      | <b>Medical Instrumentation</b> : Sources of Biomedical Signals, Basic<br>medical Instrumentation system, Performance requirements of medical<br>Instrumentation system, Microprocessors in medical instruments, PC<br>based medical Instruments, General constraints in design of medical<br>Instrumentation system, Regulation of Medical devices.                                                                                                         | 6   |
| 2      | <b>Measurement systems:</b> Specifications of instruments, Static & Dynamic characteristics of medical instruments, Classification of errors, Statistical analysis, Reliability, Accuracy, Fidelity, Speed of response, Linearization of technique, Data Acquisition System.                                                                                                                                                                                | 6   |
| 3      | <b>Bioelectric signals and Bioelectric amplifiers:</b> Origin of bioelectric signals, Electrodes, Electrode Tissue interface, Galvanic Skin Response, BSR, Motion artifacts, Instrumentation amplifiers, Special features of bioelectric amplifiers, Carrier amplifiers, Chopper amplifiers, Phase sensitive detector. ECG, EEG, EMG, ERG, Lead systems and recording methods.                                                                              | 8   |
| 4      | <b>Biomedical recording systems:</b> Basic Recording systems, General consideration for signal conditioners, Preamplifiers, Differential Amplifier, Isolation Amplifier, Electrocardiograph, Phonocardiograph, Electroencephalograph, Electromyography, Digital stethoscope Other biomedical recorders, Biofeedback instrumentation, Electrostatic and Electromagnetic coupling to AC signals, Proper grounding, Patient isolation and accident prevention. | 7   |
| 5      | <b>Patient Monitoring Systems:</b> System concepts, Cardiac monitor, selection of system parameters, Bedside monitors, Central monitors, Heart rate meter, Pulse rate meter, Measurement of respiration rate, Holter monitor and Cardiac stress test, Catheterization Laboratory Instrumentation, Organization and equipments used in ICCU and ITU.                                                                                                         | 6   |
| 6      | <b>Biological sensors:</b> Sensors / receptors in the human body, basic organization of nervous system-neural mechanism, Chemoreceptor: hot and cold receptors, barro receptors, sensors for smell, sound, vision, Ion exchange membrane electrodes, enzyme electrode, glucose sensors, immunosensors, Basic principles of MOSFET biosensors & BIOMEMS, basic idea about Smart sensors.                                                                     | 6   |

#### **Theory Assessment:**

#### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

#### End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### **References:**

- 1. Joseph Bronzino, "Biomedical Engineering and Instrumentation", PWS Engineering, Boston.
- 2. Cromwell, Weibell& Pfeiffer, "Biomedical Instrumentation & Measurement", Prentice Hall, India.
- 3. R. S. Khandpur, "Handbook of Bio-Medical Instrumentation", 2nd Edition, Tata McGraw Hill.
- 4. J.Webster, "Bioinstrumentation", Wiley & Sons.
- 5. Joseph D.Bronzino, "The Biomedical Engineering handbook", CRC Press.
- 6. D. L. Wise, "Applied Bio Sensors", Butterworth, London.
- 7. J.J.Carr&J.M.Brown, "Introduction to Biomedical Equipment Technology" Pearson Education, Asia

| Course<br>Code | Course Name                  | Scheme        | Theory | Practical | Tutorial | Total |
|----------------|------------------------------|---------------|--------|-----------|----------|-------|
| IL 473         | Design for<br>Sustainability | Contact Hours | 3      | -         | -        | 3     |
|                |                              | Credits       | 3      | -         | -        | 3     |

| Course | Course Name                  | Examination Scheme  |         |         |             |      |           |      |       |  |
|--------|------------------------------|---------------------|---------|---------|-------------|------|-----------|------|-------|--|
| Code   |                              | Theory Marks        |         |         |             | Term | Practical | Oral | Total |  |
|        |                              | Internal Assessment |         |         | End         | Work |           |      |       |  |
|        |                              | IA 1                | IA<br>2 | Average | Sem<br>Exam |      |           |      |       |  |
| IL 473 |                              | 40                  | 40      | 40      | 60          | -    | -         |      | 100   |  |
|        | Design for<br>Sustainability |                     |         |         |             |      |           |      |       |  |

## **Objectives:**

- 1. Understand the complex environmental, economic, and social issues related to sustainable engineering
- 2. Become aware of concepts, analytical methods/models, and resources for evaluating and comparing sustainability implications of engineering activities
- 3. Critically evaluate existing and new methods
- 4. Develop sustainable engineering solutions by applying methods and tools to research a specific system design
- 5. Clearly communicate results related to their research on sustainable engineering

Outcomes: Learner will be able to...

- 1. Account for different theoretical and applied design principles and models for sustainable design
- 2. Account for and critically relate to sustainable design from an ethical, cultural and historical perspective

- 3. Critically review different design solutions ecological, social and economical consequences, risks, possible uses and functions in the work for a sustainable development
- 4. Independently apply a specific design theory on a specific challenge within the sustainability field.

## **Theory Syllabus**

| Module | Detailed Contents                                                                                                                                                                                     | Hrs |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| 1      | Introduction - Need, Evolution of sustainability within Design,<br>environmental - economic sustainability concept, Challenges for<br>sustainable development, Environmental agreement & protocols    | 6   |  |  |  |  |
| 2      | Product Life Cycle Design – Life Cycle Assessment, Methods &<br>Strategies, Software Tools                                                                                                            |     |  |  |  |  |
| 3      | Sustainable Product - Service System Design, Definition, Types<br>& Examples ,Transition Path and Challenges, Methods and Tools,<br>Design thinking and design process for sustainable<br>Development |     |  |  |  |  |
| 4      | Design for Sustainability – Engineering Design Criteria and Guidelines                                                                                                                                | 6   |  |  |  |  |
| 5      | Design for Sustainability – Architecture, Agriculture, Cities &<br>Communities, Carbon Footprint                                                                                                      | 6   |  |  |  |  |
| 6      | Green Building Technologies - Necessity, Principles, low energy materials, effective systems                                                                                                          | 7   |  |  |  |  |

## **Theory Assessment:**

## **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

## End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## **References:**

- 1. C. Vezzoli, System Design for sustainability. Theory, methods and tools for a sustainable / satisfaction system/design, Rimini, Maggioli Edition, 2007.
- 2. C. Vezzoli and E. Manzini, Design for Environmental Sustainability, Springer Verlag, London, 2008.
- 3. L. Nin and C. Vezzoli, Designing Sustainable Product-Service Systems for all. Milan: Libreria, CLUP, 2005
- 4. A. Tukker and U. Tischner (eds.), New Business for Old Europe, Product Services, Sustainability and Competitiveness, Greenleaf Publishing, Shefield, 2008.
- 5. A. Tukker, M. Charter, C. Vezzoli, E. Sto and M.M. Andersen (eds.), System innovation for Sustainability Perspective on Radical Changes to sustainable

consumption and production, Greenleaf Publishing, Shefield, 2008 UNEP, Product-Service Systems and Sustainability. Opportunities for sustainable solutions, CEDEX, Paris, 2002,

http://www.uneptie.org/pc/sustain/reports/pss/pss-imp-7.pdf

| Course<br>Code | Course<br>Name       | Scheme        | Theory | Practical | Tutorial | Total |
|----------------|----------------------|---------------|--------|-----------|----------|-------|
| IL 474         | Political<br>Science | Contact Hours | 3      | -         | -        | 3     |
|                |                      | Credits       | 3      | _         | -        | 3     |

| Course | Course<br>Name       | Examination Scheme |         |           |            |      |           |      |       |  |  |
|--------|----------------------|--------------------|---------|-----------|------------|------|-----------|------|-------|--|--|
| Code   |                      | ne Theory Marks    |         |           |            | Term | Practical | Oral | Total |  |  |
|        |                      | Inte               | rnal As | ssessment | End<br>Sem | Work |           |      |       |  |  |
|        |                      | IA 1               | IA 2    | Average   | Exam       |      |           |      |       |  |  |
| IL 474 |                      | 40                 | 40      | 40        | 60         | -    | -         |      | 100   |  |  |
|        | Political<br>Science |                    |         |           |            |      |           |      |       |  |  |

## **Objectives:**

- 1. Provide a good grounding in the basic concepts of Political Theory.
- 2. Familiarize learners with fundamental rights and duties.
- 3. Teach students the structure and process of the electoral system, the features and trends of the party system and create an awareness of the social movements in India.
- 4. To inculcate the values of renowned thinkers on law, freedom of thought and social justice.
- 5. To prepare the learners for understanding the importance of Comparative Government and Politics.
- 6. To train learners in understanding International Relations.

Outcomes: Learner will be able to...

- 1. Acquire conceptual and theoretical knowledge in the basic concepts of political theory.
- 2. Demonstrate understanding of fundamental rights and duties and directive principles.
- 3. Perform successfully in expressing the process of the electoral system, the features and trends of the party system and the importance of the social movements in India.

- 4. Illustrate the contribution of renowned thinkers and relate it to the current scenario.
- 5. Compare and contrast Indian Government and Politics with European countries.
- 6. Develop an understanding of International Relations with respect to Indian foreign policy.

## **Theory Syllabus**

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hours |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1      | Understanding Political Theory- Evolution of State, Nation,<br>Sovereignty, Types and Linkages between Power and Authority;<br>Interrelationships between Law. Liberty, Equality, Rights; Justice<br>and Freedom, Democracy vs Authoritarianism                                                                                                                                                                                                                                                                                                                                                                                                                              | 4     |
| 2      | Constitutional Government in India -Evolution of the Indian<br>Constitution, . Fundamental Rights and Duties. Directive<br>Principles. Union-State Relations, Union Legislature: Rajya Sabha,<br>Lok Sabha: Organisation, Functions – Law making procedure,<br>Parliamentary procedure, 6. Government in states: Governor, Chief<br>Minister and Council of Ministers: position and functions – State<br>Legislature: composition and functions. 7.Judiciary: Supreme Court<br>and the High Courts: composition and functions – Judicial<br>activism. 8.Constitutional amendment. Major recommendations of<br>National Commission to Review the Working of the Constitution. | 6     |
| 3      | Politics in India: Structures and Processes- Party system: features<br>and trends – major national political parties in India: ideologies and<br>programmes. Coalition politics in India: nature and trends. Electoral<br>process: Election Commission: composition, functions, role.<br>Electoral reforms. 3. Role of business groups, working class,<br>peasants in Indian politics, Role of (a) religion (b) language (c) caste<br>(d) tribe. 5. Regionalism in Indian politics. 6. New Social<br>Movements since the 1970s: (a) environmental movements (b)<br>women's movements (c) human rights movements.                                                             | 6     |
| 4      | Indian Political Thought- 1 Ancient Indian Political ideas: overview.<br>2. Kautilya: Saptanga theory, Dandaniti, Diplomacy. 3. Medieval<br>political thought in India: overview (with reference to Barani and<br>Abul Fazal). Legitimacy of kingship. 4. Principle of Syncretism,<br>Modern Indian thought: Rammohun Roy as pioneer of Indian<br>liberalism – his views on rule of law, freedom of thought and social<br>justice. 6. Bankim Chandra Chattopadhyay, Vivekananda and<br>Rabindranath Tagore: views on nationalism. 7. M.K. Gandhi:<br>views on State, Swaraj, Satyagraha.                                                                                     | 7     |
| 5      | Comparative Government and Politics- Evolution of Comparative<br>Politics. Scope, purposes and methods of comparison. Distinction<br>between Comparative Government and Comparative Politics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6     |
| 6      | Perspectives on International Relations- Understanding International<br>Relations: outline of its evolution as academic discipline. 2. Major<br>theories: (a) Classical Realism and Neo-Realism (b) Dependency<br>(c) World Systems theory. 3. Emergent issues: (a) Development (b)<br>Environment (c) Terrorism                                                                                                                                                                                                                                                                                                                                                             | 7     |

| (d) Migration. 4. Making of foreign policy. 5. Indian foreign policy: |
|-----------------------------------------------------------------------|
| major phases: 1947-1962; 1962-1991; 1991-till date. 6. Sino-Indian    |
| relations; Indo-US relations.                                         |

## **Theory Assessment:**

## **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

## **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## **References:**

- 1. O.P. Gauba. (2021). An Introduction to Political Theory. Mayur books
- 2. Vibhuti Bhushan Mishra. (1987). Evolution of the Constitutional History of India (1773-1947 : With Special Reference to the Role of the Indian National Congress and the Minorities). South Asia Books
- 3. Chetna Sharma Pushpa Singh. (2019). Comparative Government and Politics.SAGE Publications India Pvt Ltd.
- 4. Henry R. Nau. (1900). Perspectives on International Relations: Power, Institutions and Ideas. CQ Press

| Course<br>Code | Course Name             | Scheme        | Theory | Practical | Tutorial | Total |
|----------------|-------------------------|---------------|--------|-----------|----------|-------|
| IL 475         | Research<br>Methodology | Contact Hours | 3      | -         | -        | 3     |
|                |                         | Credits       | 3      | -         | -        | 3     |

| Course | Course Name             | Examination Scheme  |         |         |             |      |           |      |         |  |
|--------|-------------------------|---------------------|---------|---------|-------------|------|-----------|------|---------|--|
| Code   |                         | Theory Marks        |         |         |             | Term | Practical | Oral | l Total |  |
|        |                         | Internal Assessment |         | End     | Work        |      |           |      |         |  |
|        |                         | IA 1                | IA<br>2 | Average | Sem<br>Exam |      |           |      |         |  |
| IL 475 |                         | 40                  | 40      | 40      | 60          | -    | -         |      | 100     |  |
|        | Research<br>Methodology |                     |         |         |             |      |           |      |         |  |

## **Objectives:**

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

Outcomes: At the end of the course learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas.
- 2. Accurately collect, analyse and report data.
- 3. Present complex data or situations clearly.
- 4. Review and analyse research findings.

**Theory Syllabus** 

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1      | <ul> <li>Introduction and Basic Research Concepts</li> <li>1.1 Research – Definition; Concept of Construct,<br/>Postulate, Proposition, Thesis, Hypothesis, Law, Principle.<br/>Philosophy and validity of research</li> <li>1.2 Objectives of Research</li> <li>1.3 Characteristics of Research: Systematic, Valid,<br/>Verifiable, Empirical and Critical</li> <li>1.4 Need of Research in Business and Social Sciences</li> <li>1.5 Issues And Problems in Research</li> </ul>                                                                                      | 8     |
| 2      | <ul> <li>Types of Research</li> <li>2.1. Pure and Applied Research</li> <li>2.2. Descriptive and Explanatory Research</li> <li>2.3. Analytical Research</li> <li>2.4 Qualitative and Quantitative Approaches</li> <li>2.5 Literature review</li> <li>2.6 Developing the objectives.</li> </ul>                                                                                                                                                                                                                                                                         | 8     |
| 3      | <ul> <li>Research Design and Sample Design</li> <li>3.1 Research Design – Meaning, Types and Significance</li> <li>3.2 Sample Design – Meaning and Significance</li> <li>Essentials of a good sampling Stages in</li> <li>Sample Design Sampling methods/techniques</li> <li>Sampling Errors</li> </ul>                                                                                                                                                                                                                                                                | 7     |
| 4      | <ul> <li>Research Methodology</li> <li>4.1 Meaning of Research Methodology</li> <li>4.2. Stages in Scientific Research Process: <ul> <li>a. Identification and Selection of Research Problem</li> <li>b. Formulation of Research Problem</li> <li>c. Review of Literature</li> <li>d. Formulation of Hypothesis</li> <li>e. Formulation of research Design</li> <li>f. Sample Design</li> <li>g. Data Collection</li> <li>h. Data Analysis</li> <li>i. Hypothesis testing and Interpretation of Data</li> <li>j. Preparation of Research Report</li> </ul> </li> </ul> | 8     |
| 5      | <ul> <li>Formulating Research Problem</li> <li>5.1 Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of data, Generalization and Interpretation of analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 | 4     |
| 6      | <ul> <li>Outcome of Research</li> <li>6.1 Preparation of the report on conclusion reached.</li> <li>6.2 Validity Testing &amp; Ethical Issues</li> <li>6.3 Suggestions and Recommendation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   | 4     |

| <b>6.4</b> Identification of future scope |
|-------------------------------------------|
|-------------------------------------------|

#### **Theory Assessment:**

## **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

#### **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## **Reference :**

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

| Course Code | Course Name                            | Credits |
|-------------|----------------------------------------|---------|
| IL 476      | Maintenance of<br>Mechanical Equipment | 3       |

Syllabus Under Preparation

| Course<br>Code | Course Name              | Scheme           | Theory | Practical | Tutorial | Total |
|----------------|--------------------------|------------------|--------|-----------|----------|-------|
| IL 477         | Cooking and<br>Nutrition | Contact<br>Hours | 3      | -         | -        | 3     |
|                |                          | Credits          | 3      | -         | -        | 3     |

| Course | Course<br>Name              | Examination Scheme  |      |            |      |      |           |      |       |  |
|--------|-----------------------------|---------------------|------|------------|------|------|-----------|------|-------|--|
| Code   |                             | Theory Marks        |      |            |      | Term | Practical | Oral | Total |  |
|        |                             | Internal Assessment |      | End<br>Sem | Work |      |           |      |       |  |
|        |                             | IA 1                | IA 2 | Average    | Exam |      |           |      |       |  |
| IL 477 |                             | 40                  | 40   | 40         | 60   | -    | -         |      | 100   |  |
|        | Cooking<br>and<br>Nutrition |                     |      |            |      |      |           |      |       |  |

# **Course Objectives**:

The course is aimed to:

1. To understand nutrition and of health problems related to diet and various factors affect diet

2. To various statistical tools required to analyze the experimental data in nutrition and community research

3. Gain information about various food constituents, and changes that occur in them during food processing.

4. To gain food-related knowledge and skills so that they can organise and manage family resources effectively according to the needs and lifestyles of family members

5. To be able to make informed judgements and choices about the use of food available.

6. To create interest in the creative side and enjoyment of food and the skills necessary for food preparation and food preservation. And to be aware of relevant mandatory and other necessary safety and hygiene requirements

# **Course Outcomes:**

On successful completion of course learner/student will be able to:

1. To understand the importance and mechanisms of the food components taking place during food processing,

2. To understand nutrition and of health problems related to diet and various factors affect diet

3. To aware how eating patterns and dietary needs depend on age and social group

4. Ability to assess the effectiveness and validity of claims made by advertisers

5. To enhance aesthetic and social sensitivity to dietary patterns and to develop an interest in the creative aspect and enjoyment of food

6. To develop skills necessary for food preparation and food preservation and knowledge of safety and hygiene requirements

| Module<br>No | Module                                        | Detailed Contents of Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs. |
|--------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1            | Nutritional<br>terms                          | Nutritional terms: proteins (high biological and<br>low biological value), carbohydrates<br>(monosaccharide, disaccharide and<br>polysaccharide), fats, vitamins (A, C, D, E, K, B<br>group – thiamin, riboflavin, nicotinic acid and<br>cobalamin), mineral elements (calcium, iron,<br>phosphorous, potassium, sodium, iodide) water<br>Sources and uses of food energy. Sources and<br>functions of dietary fibre.                                                                                                                                                                            | 3    |
| 2            | Kitchen<br>equipment &<br>Kitchen<br>planning | Kitchen equipment & Kitchen planning:<br>Selection, Use and care of: modern cookers,<br>thermostatic control and automatic time-controlled<br>ovens, microwave ovens, slow electric cook pots,<br>refrigerators and freezers, small kitchen equipment,<br>e.g. knives, pans, small electrical kitchen<br>equipment, e.g. food processors, electric kettles,<br>Advantages and disadvantages of microwave ovens,<br>Organisation of cooking area and equipment for<br>efficient work., Selection, Use and care of: work<br>surfaces, flooring, walls and wall coverings,<br>lighting, ventilation | 4    |

## **Detailed Theory Syllabus:**

| 3 | Meal<br>planning and<br>guidelines               | <b>Meal planning and guidelines:</b> Factors affecting<br>food requirements, Planning and serving of family<br>meals, Meals for different ages, occupations,<br>cultures and religions, Special needs of: people with<br>food allergies and intolerances, people with medical<br>conditions linked to diet, such as diabetes,<br>convalescents, vegetarians, including vegans and<br>lacto-vegetarians, Meals for special occasions,<br>festivals, packed meals, snacks, beverages, Use of<br>herbs, spices and garnishes, Attractive presentation<br>of food, Terminology describing recommended<br>dietary intakes, e.g. Dietary Reference Value (DRV)<br>and Reference Daily Intake (RDI).                                                                                       | 6 |
|---|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | Strategic<br>cooking                             | Strategic cooking: Transfer of heat by conduction,<br>convection and radiation. Principles involved in the<br>different methods of cooking, baking, boiling,<br>braising, cooking in a microwave oven, frying,<br>grilling, poaching, pressure cooking, roasting,<br>simmering, steaming, stewing, use of a slow cooker.<br>Reasons for cooking food, Sensory properties of<br>food (flavour, taste, texture), Effect of dry and moist<br>heat on proteins, fats and oils, sugars and starches,<br>and vitamins to include: caramelisation, coagulation<br>dextrinization, enzymic and non-enzymic<br>browning, gelatinisation, rancidity, smoking point,<br>Preparation and cooking of food to preserve<br>nutritive value, Economical use of food, equipment,<br>fuel and labour. | 6 |
| 5 | Convenience<br>foods<br>and Basic<br>proportions | <b>Convenience foods and Basic proportions:</b><br>Foods partly or totally prepared by a food<br>manufacturer – dehydrated, tinned, frozen, ready-<br>to-eat, Intelligent use of these foods, Advantages<br>and disadvantages, Food additives – types and<br>function, Packaging – types, materials used,<br>Labelling – information found on labels,<br>Importance of maintaining proportions,<br>maintaining proportions for : Bakery products,<br>melting, rubbing-in and whisking methods,<br>Pastries – shortcrust, flaky and rough puff, Sauces<br>– pouring and coating, roux and blended methods,<br>Batters – thin (pouring) and coating, Sweet and<br>savoury yeast products                                                                                              | 5 |

| 6 Food<br>preservation<br>& Kitcher<br>safety<br>and first aid | <ul> <li>Food preservation &amp; Kitchen safety and first aid: Food preservation &amp; Kitchen safety and first aid: Reasons for preserving food, Methods of preservation and an understanding of the principles involved: heating – canning, bottling; removal of moisture – dehydrating; reduction in temperature – freezing; chemical preservation – sugar, salt, vinegar; modified atmosphere packaging; irradiation;</li> <li>Awareness of potential danger areas in the kitchen. Safety precautions. First aid for burns and scalds, cuts, electric shock, fainting, shock.</li> </ul> | 5 |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|

# **Theory Assessment:**

**A.** Internal Assessment (IA): Two class tests of 40 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and the second class test when an additional 35% syllabus is completed. Duration of each test shall be one hour.

**B.** End Semester Theory Examination: In question, paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

1. Question paper will consist of 3 questions, each carrying 20 marks.

2. Question number 1 will be compulsory and based on maximum contents of the syllabus

3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)

4. Total three questions need to be solved.

## 5. Books and References:

- 1. Fundamentals of Food and Nutrition by Tejmeet Rekhi, Heena Yadav
- 2. Food Process Engineering And Technology by Akash Pare, B L Mandhyan

| Subject Code | Subject Name    | Total (Credits) |
|--------------|-----------------|-----------------|
| ET 491       | Major Project B | 4               |

## Lab Objectives:

1. The Project work enables the students to develop the required skills and knowledge gained during the programme by applying them for the analysis of a specific problem or issue, via a substantial piece of work which is carried out over an extended period.

2. It enables the students to demonstrate proficiency in the design of a research project, application of appropriate research methods, collection and analysis of data and presentation of results.

3. To improve the team building, communication and management skills of the students.

4. To introduce students to the vast array of literature available of the various research challenges in the field of Electronics & telecommunication engineering.

5. To create awareness among the students of the characteristics of several domain areas where Electronics & telecommunication engineering can be effectively used.

## Course Outcomes: Upon successful completion of this course, the learner will be able to

1. Discover potential research areas in the field of Electronics & telecommunication engineering.

- 2. Conduct a survey of several available literatures in the preferred field of study.
- 3. Compare and contrast the several existing solutions for research challenges.
- 4. Demonstrate an ability to work in teams and manage the conduct of the research study.
- 5. Formulate and propose a plan for creating a solution for the research plan identified.
- 6. To report and present the findings of the study conducted in the preferred domain

#### **Guidelines:**

## 1. Project Topic:

• To proceed with the project work it is very important to select a right topic. Project can be undertaken on any domain of electronics and telecommunication programmes. Research and development projects on problems of practical and theoretical interest should be encouraged.

• Project work must be carried out by the group of at least two students and maximum four and

must be original.

• Students can certainly take ideas from anywhere, but be sure that they should evolve them in the unique way to suit their project requirements.

• The project work can be undertaken in a research institute or organization/company/any business establishment.

• Students must consult an internal guide along with external guide (if any) in selection of topic.

• Head of department and senior staff in the department will take decisions regarding selection of projects.

• Students has to submit a weekly progress report to the internal guide whereas internal guide has to keep track on the progress of the project and also has to maintain attendance report. This progress report can be used for awarding the term work marks.

• In case of industry projects, visit by an internal guide will be preferred.

## 2. Project Report Format:

At the end of semester a project report should preferably contain at least following details:-

- Abstract
- Introduction
- Literature Survey
  - a) Survey Existing system
  - b) Limitation of the Existing system or research gap
  - c) Problem Statement and Objective
  - d) Scope
- Proposed System
- a) Analysis/Framework/ Algorithm
- b) Details of Hardware & Software
- c) Design details
- d) Methodology (your approach to solve the problem)
- Implementation Plan for next semester
- Conclusion
- References
- 3. Term Work:

Distribution of marks for term work shall be as follows:

- a) Weekly Attendance on Project Day
- b) Contribution in the Project work
- c) Project Report (Spiral Bound)
- d) Term End Presentation (Internal)

The final certification and acceptance of TW ensures the satisfactory performance on the above aspects

## 4. Oral Exam:

Oral examination of Project-I should be conducted by Internal and External Examiners. Students have to give a presentation and demonstration on the Project- I

| Course Code | Course Name                   | Credits |
|-------------|-------------------------------|---------|
| ET 421      | Block chain for Communication | 04      |

#### **Prerequisite:**

Java and scripting , Database and Management , Computer Communication and Network **Objectives:** 

- 1. To understand basics of Blockchain technology
- 2. To understand concept of cryptocurrency and Bitcoin
- 3. To understand concepts of Ethereum Blockchain
- 4. To learn the concepts of Hyperledger
- 5. To understand solidity programming language and concepts of smart contracts
- 6. To learn and develop various applications of Blockchain

**Outcomes:** Learner will be able to...

- 1. Understand working knowledge of the emerging block chain technology.
- 2. Discuss concept of cryptocurrency and Bitcoin
- 3. Apply the knowledge of Ethereum Blockchain
- 4. Understand and analyze the working of Hyperledger
- 5. Explore basics of solidity programming language and smart contracts
- 6. Develop various applications of Blockchain

| Sr.<br>No. | Module          | Detailed Content                       | Hours | CO<br>Mapping |
|------------|-----------------|----------------------------------------|-------|---------------|
| Ι          | Introduction to | What is Blockchain, Blockchain         | 4     | CO1           |
|            | Blockchain      | Technology Mechanism Networks,         |       |               |
|            |                 | Blockchain Origins, Objective of       |       |               |
|            |                 | Blockchain, Blockchain challenges,     |       |               |
|            |                 | Transsactions and Blocks, P2P systems, |       |               |
|            |                 | Keys as Identity, Digital signatures,  |       |               |
|            |                 | hashing and public key cryptosystems,  |       |               |
|            |                 | private vs public blockchain           |       |               |
|            | Bitcoin and     | What is Bitcoin, The Bitcoin           |       |               |
|            | Cryptocurrency  | Network, The Bitcoin Mining Process,   |       |               |
|            |                 | Mining Developments, Bitcoin Wallets,  |       |               |
|            |                 | Decentralization and Hard Forks,       |       | <b>~</b> ~~   |
| Π          |                 | Ethereum Virtual Machine (EVM),        | 8     | CO2           |
|            |                 | Merkle Tree, Double-Spend Problem,     |       |               |
|            |                 | Blockchain and Digital Currency,       |       |               |
|            |                 | Transactional Blocks, Impact of        |       |               |

#### **Theory Syllabus**

|    |                                           | Blockchain Technology on<br>Cryptocurrency                                                                                                                                                                                                                          |   |     |
|----|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| Ш  | Introduction to<br>Ethereum<br>Blockchain | What is Ethereum, Introduction to<br>Ethereum, Consensus Mechanisms, How<br>Smart Contracts Work, Metamask Setup,<br>Ethereum Accounts, Receiving Ether's<br>What's a Transaction?, Smart Contracts.                                                                | 7 | CO3 |
| IV | Introduction to<br>Hyperledger            | What is Hyperledger?, Distributed<br>Ledger Technology & its Challenges,<br>Hyperledger & Distributed Ledger<br>Technology, Hyperledger Fabric,<br>Hyperledger Composer.                                                                                            | 5 | CO4 |
| V  | Solidity<br>Programming<br>Language       | Solidity -Language of Smart Contracts,<br>Installing Solidity & Ethereum Wallet,<br>Basics of Solidity, Layout of a Solidity<br>Source File & Structure of Smart<br>Contracts, General Value Types (Int,<br>Real, String, Bytes, Arrays, Mapping,<br>Enum, address) | 8 | CO5 |
| VI | Blockchain<br>Applications                | Blockchain Applications: Internet of<br>Things, Medical Record Management<br>System, Do-main Name Service and<br>future of Blockchain                                                                                                                               | 4 | CO6 |

# Lab Syllabus

# Lab Prerequisite: Cryptography, DataStructure, Networking, OOP

| Sr.<br>No. | Level<br>1. Basic<br>2. Design<br>3. Advanced<br>4. Project/Case<br>Study/Seminar | Detailed Lab Description                                                                                          | Hours |
|------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|
| 1          | Basic                                                                             | Understanding the concept of Hash in Blockchain                                                                   | 02    |
| 2          | Advanced                                                                          | Working of Bitcoin mining and how blocks are added in the Blockchain.                                             | 02    |
| 3          | Advanced                                                                          | Setting up bitcoin wallet                                                                                         | 02    |
| 4          | Basic                                                                             | Creating and Building Up Crypto Token                                                                             | 02    |
| 5          | Advanced                                                                          | Setting up Metamask and MIST Wallet                                                                               | 02    |
| 6          | L3                                                                                | Set up Hyperledger Fabric Blockchain using<br>Hyperledger Composer locally                                        | 02    |
| 7          | L1                                                                                | Advanced Storage smart contract with function to add<br>elements to array,function to read individual elements of | 02    |

|    |         | array, function to read all elements of array and function to return length of array.                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8  | L1,L3   | Create a smart contract for Hotel Room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 |
| 9  | L1 , L3 | Create a smart contract that implements the simplest form of<br>a cryptocurrency. The contract allows only its creator to create<br>new coins (different issuance schemes are possible). Anyone<br>can send coins to each other without a need for registering with<br>a username and password, all you need is an Ethereum keypair                                                                                                                                                                                          | 02 |
| 10 | L1 , L3 | Simple Open Auction Smart Contract<br>The general idea of the following simple auction contract is<br>that everyone can send their bids during a bidding period. The<br>bids already include sending money / Ether in order to bind the<br>bidders to their bid. If the highest bid is raised, the previous<br>highest bidder gets their money back. After the end of the<br>bidding period, the contract has to be called manually for the<br>beneficiary to receive their money - contracts cannot activate<br>themselves. | 02 |
| 11 | L4      | Practical use cases of Blockchain - Case study                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02 |

## Software Requirements: Remix Browser - online compiler

#### **Theory Assessment:**

#### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

#### **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

- 1. Term work Assessment: At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.
- 2. Oral/Viva Assessment : The practical and oral examination will be based on the entire syllabus.

## **Text Book**

- 1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (July 19, 2016).
- 2. <u>ArshdeepBahga</u>, Vijay Madisetti, Blockchain Applications: A Hands-On Approach Paperback, VPT; 1st edition (31 January 2017)
- 3. Baset, Salman A., Blockchain Development with Hyperledger, Packt, 2019
- 4. Parikshit Jain, A Practical Guide To Blockchain And Its Applications, Bloomsbury India,1st Edition,February 2019

## **Reference Books**

- 1. Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies
- 2. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
- 3. DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger,"Yellow paper.2014.
- 4. Nicola Atzei, Massimo Bartoletti, and TizianaCimoli, A survey of attacks on Ethereum smart contracts

| Course Code | Course Name           | Credits |
|-------------|-----------------------|---------|
| ET 422      | AIML in Communication | 04      |

## **Prerequisite:**

Fundamentals of Mathematics, Communication systems, Artificial Neural Networks.

## **Course Objectives:**

- 1. To understand the concept of data cleaning and data transformation.
- 2. To understand and apply the basic methods of feature extraction and feature evaluation.
- 3. To understand and apply both supervised and unsupervised machine learning algorithms to improve performance of equalizers.
- 4. To develop routing algorithms using machine learning to resolve real-world problems in Network design.
- 5. To become familiar with various Neural Networks methods for controlling ATM calls.
- 6. To understand fault management techniques in Communication systems.

## Course Outcomes: Learner will be able to...

- 1. Able to Understand the fundamentals of pattern recognition and machine learning.
- 2. Able to Understand the issue of dimensionality and apply suitable feature extraction methods considering the characteristics of a given problem.
- 3. Able to apply Self organizing maps and distribution Learning methods for the adaptive equalization.
- 4. Able to create solutions to real-world problems of Network design and Management using reinforcement learning and Hopfield optimization techniques.
- 5. Understand and apply Network control methods for performance enhancement of communication systems.
- 6. Analyze the performance of communications systems by estimating various faults in the systems.

| Sr.<br>No. | AIRPOIN      | Detailed Content                                                                                                                                                         | Hours | CO<br>Mapping |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Introduction | Basic definitions; Hypothesis space and inductive<br>bias; Data cleaning; Data transformation;<br>Evaluation;Model visualization; Cross-validation;<br>Linear Regression | 04    | CO1           |

#### **Theory Syllabus**

| Π  | Data<br>Interpretation &<br>feature<br>extraction | Curse of dimensionality; Principal component<br>analysis; Fisher linear discriminant, Feature<br>extraction from multivariate data, image data;<br>Feature evaluation. Text recognition for Conversion<br>of Telephone, Speech recognition.                                                                   | 04 | CO2 |
|----|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Ш  | Equalisers                                        | Adaptive equalization and channel equalization by<br>distribution Learning, Equalization of varying<br>channels using RBFNN, Adaptive signal recovery,<br>Self organizing maps in nonlinear multipath<br>channels.                                                                                            | 08 | CO3 |
| IV | Network<br>design and<br>Management               | Adaptive Routing, Distributed reinforcement<br>learning scheme for network routing. Optimal traffic<br>routing using Self organization principle, Hopfield<br>optimization techniques for routing in computer<br>networks, Q-routing approach to adaptive traffic<br>control. NN for network topology design. | 06 | CO4 |
| V  | Network<br>Control                                | ATM call control by Neural Network.<br>ATM Multimedia traffic prediction. Optimization<br>for switching. Control ATM call traffic by<br>reinforcement learning                                                                                                                                                | 04 | CO5 |
| VI | Fault<br>Management                               | Learning index rules and adaption functions for a communication network, Identify faults in switching systems using Distributed neural network.                                                                                                                                                               | 08 | CO6 |

# Lab Syllabus

| Sr.<br>No. | Level 1. Basic 2. Design 3. Advanced 4. Project/Case Study/Seminar | Detailed Lab/Tutorial Description                                                              | Hours |
|------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------|
| 1          | Basic                                                              | To study various steps to clean the data.                                                      | 02    |
| 2          | Basic                                                              | Minimizing the error function and fitting the best line or hyperplane using linear regression. | 02    |
| 3          | Design                                                             | Write a program to reduce the dimensionality of the data set.                                  | 02    |
| 4          | Design                                                             | Design an Algorithm to extract features from multivariate data.                                | 02    |
| 5          | Design                                                             | Write a program for equalization of varying channels using RBFNN                               | 02    |

| 6 | Advanced | Design adaptive routing algorithm using reinforcement learning                               | 02 |
|---|----------|----------------------------------------------------------------------------------------------|----|
| 7 | Advanced | Design optimal traffic routing algorithm using the Self organizing Maps.                     | 02 |
| 8 | Advanced | Write a algorithm to control ATM call traffic by using reinforcement learning                | 02 |
| 9 | Project  | Design an algorithm to identify faults in switching systems using Distributed neural network | 02 |

#### **Theory Assessment:**

## **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

## **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## Lab Assessments:

**Term work Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

**Oral/Viva Assessment**: The practical and oral examination will be based on the entire syllabus.

#### **Text Books:**

- 1. T. Mitchell, Machine Learning, McGraw Hill.
- 2. M. Gopal, Applied Machine Learning, McGraw Hill.

#### **References:**

- 1. B.Yegnanarayana, Artificial Neural Networks, Prentice Hall of India.
- 2. Satish Kumar, Neural Networks A Classroom Approach, Tata McGraw-Hill.
- 3. A. Ethem, Introduction to Machine Learning, PHI Learning Pvt. Ltd.
- 4. S N Sivanandam, Introduction to Neural Networks, McGraw-Hill edu. Pvt. Ltd.

| Course Code | Course Name         | Credits |
|-------------|---------------------|---------|
| ET 423      | MIMO Systems for 5G | 04      |

## **Prerequisite:**

Wireless and mobile communication, Antenna and Digital Communication. Course Objectives:

- 1. To get familiar with the basics of the diversity schemes involved in the MIMO system.
- 2. To understand planning and design of the capacity of deterministic and random MIMO channels and fading channels.
- 3. To inculcate the design considerations of MIMO antenna system
- 4. To study various space time coding techniques.
- 5. To explore various algorithms used to detect the received signal in MIMO systems.
- 6. To study the advances in MIMO Communication Systems.

Course Outcomes: Learner will be able to...

- 1. Classify and explain the diversity schemes involved in MIMO with advantages, applications, channel models and power allocation.
- 2. Calculate the capacity of deterministic and random MIMO channels and fading channels.
- 3. Classify and compare SISO antenna with MIMO antenna
- 4. Explain the different space time coding techniques like STBCs, STTCs and Space time turbo codes.
- 5. Describe various algorithms used to detect the received signal in MIMO systems like Maximum likelihood, MMSE, ZFE.
- 6. Discuss the advances in MIMO Communication Systems.

#### **Theory Syllabus**

| Sr.<br>No. | Module                                    | Detailed Content                                                                                                                                                                                                                                                                                                                                               | Hours | CO<br>Mapping |
|------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| Ι          | Introduction to<br>MIMO channel<br>models | Diversity-multiplexing trade-off, transmit diversity<br>schemes, advantages and applications of MIMO<br>systems, Fading Channel Models: Uncorrelated - fully<br>correlated - separately correlated - keyhole MIMO<br>fading models, parallel decomposition of MIMO<br>channel, Power allocation in MIMO: Uniform -<br>adaptive - near optimal power allocation | 07    | CO 1          |

| П  | MIMO channel<br>capacity        | Indoor RF communication and its Propagation models,<br>Capacity for deterministic MIMO Channels: SISO –<br>SIMO – MISO – MIMO, Capacity of random MIMO<br>channels: SISO – SIMO – MISO - MIMO(Unity<br>Channel Matrix, Identity Channel Matrix), Capacity of<br>independent identically distributed channels, Capacity<br>of separately correlated Rayleigh fading MIMO<br>channels, Capacity of keyhole Rayleigh fading MIMO<br>channel, | 05 | CO2 |
|----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Ш  | MIMO<br>Antenna                 | Introduction to MIMO antenna, Massive MIMO<br>antenna system and its applications, Performance<br>Parameters of MIMO antenna system (Return loss,<br>Isolation/mutual coupling between antenna elements,<br>Envelope correlation coefficient, Total active<br>reflection coefficient and Channel capacity loss etc.),<br>Mutual coupling reduction techniques in MIMO<br>antenna                                                          | 04 | CO3 |
| ш  | Space-time<br>codes             | Advantages, code design criteria, Alamouti space-time<br>codes, SER analysis of Alamouti space-time code over<br>fading channels, Space-time block codes, Space-time<br>trellis codes, Performance analysis of Space time codes<br>over separately correlated MIMO channel, Space-time<br>turbo codes, BLAST Architectures: VBLAST –<br>HBLAST – SCBLAST - DBLAST                                                                         | 08 | CO4 |
| IV | MIMO<br>detection<br>techniques | Maximum Likelihood, Zero Forcing, Minimum Mean<br>Square Error, Zero Forcing Equalization with<br>Successive Interference Cancellation, Minimum Mean<br>Square Error Successive Interference Cancellation,<br>Lattice Reduction based detection                                                                                                                                                                                           | 08 | CO5 |
| v  | Advances in<br>MIMO systems     | Spatial modulation, MIMO based cooperative<br>communication and cognitive radio, multiuser MIMO,<br>cognitive-femtocells and large MIMO systems for 5G<br>wireless, MIMO Applications in RADAR, Satellite<br>Communication, Wi-Fi                                                                                                                                                                                                         | 07 | CO6 |

# Lab Syllabus

| Sr.<br>No. | <ul> <li>Level</li> <li>1. Basic</li> <li>2. Design</li> <li>3. Advanced</li> <li>4. Project/Case<br/>Study/Seminar</li> </ul> | Detailed Lab/Tutorial Description | Hours |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|--|
|------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|--|

| 1  | Design | Performance analysis of 2 x 2 MIMO systems using different modulation techniques with ML detection algorithm.                                                   | 02  |
|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2  | Design | Performance analysis of 2 x 2 MIMO systems using different modulation techniques with ML detection algorithm in correlated and uncorrelated channel conditions. | 02  |
| 3  | Design | Performance analysis of 2 x 2 MIMO systems using different modulation techniques with VB last detection algorithm.                                              | 02  |
| 4  | Design | Performance analysis of $2 \times 2$ MIMO systems using different space time coding techniques with ML detection algorithm.                                     | 02  |
| 5  | Design | Performance analysis of 2 x 2 MIMO systems using different space time coding techniques with V-Blast detection algorithm.                                       | 02  |
| 6  | Design | Design Performance analysis of a Multi-user MIMO system using BPSK modulation technique with SIC and V-Blast detection algorithm.                               |     |
| 7  | Design | To design a 2 element MIMO antenna system and to study<br>the effect of spacing between antenna elements on the<br>radiation characteristics of MIMO antenna.   | 02  |
| 8  | Design | To design a 2 element MIMO antenna system, using various diversity techniques.                                                                                  | 02  |
| 9  | Design | To design Massive MIMO antenna system and to analyze<br>the effect of number of antenna elements and operating<br>frequency on the performance of MIMO system   | 02  |
| 10 | Study  | Deployment of access points for indoor (in-house, basement, tunnel) RF communication.                                                                           | LO6 |

# **Software Requirements:**

- 1. Ns-2: <u>http://www.isi.edu/nsnam/ns/</u>
- 2. Virtual Lab : <u>http://vlab.amrita.edu/index.php?sub=78&brch=256</u>
- 3. Scilab Experiments Book:

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEw jgwcelodTTAhVJrI8KHTQUC9AQFggqMAA&url=http%3A%2F%2Fscilab.in%2Ftextbo ok\_companion%2Fenerate\_book%2F3446&usg=AFQjCNGDs2a6AHGKL93I3\_j8Ra1UN-5SQQ&sig2=yT9ep5\_ZlhfRDVsv-GmsWw&cad=rja

## **Online Repository Sites:**

1. http://nptel.ac.in/courses/117105132

#### **Theory Assessment:**

#### **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

## **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

## Laboratory Assessment:

## Term work 25 Marks

At least 08 Experiments covering the entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four student

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time.

**Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

#### **Text Books:**

- 1. TolgaM.Duman and Ali Ghrayeb, "Coding for MIMO Communication Systems", John Wiley & Sons Ltd., 2007.
- 2. R. S. Kshetrimayum, "Fundamentals of MIMO Wireless Communications", Cambridge University Press, 2017.
- 3. T. L. Marzetta, E. G. Larsson, H. Yang and H. Q. Ngo, Fundamentals of Massive MIMO, Cambridge University Press, 2016.
- 4. B. Kumbhani and R. S. Kshetrimayum, "MIMO Wireless Communications over Generalized Fading Channels", CRC Press, 2017.

#### **References:**

- 1. A. Chockalingam and B. S. Rajan, *Large MIMO systems*, Cambridge University Press, 2014.
- 2. EzioBiglieri, Robert Calderbank and Anthony Constantinides. "MIMO Wireless Communications".
- 3. Single and Multi Carrier MIMO Transmission for Broadband Wireless Systems by R.Prasad, Rahman and S.S. Das.
- 4. Mohammad Sharawi "Printed MIMO antenna

| Course Code | Course Name     | Credits |
|-------------|-----------------|---------|
| ET 424      | Cloud Computing | 04      |

Prerequisite: Computer Network, Operating System

## **Course Objectives:**

- 1. Basics of cloud computing.
- 2. Key concepts of virtualization.
- 3. Different Cloud Computing services
- 4. Cloud Implementation, Programming and Mobile cloud computing
- 5. Key components of Amazon Web Services
- 6. Resources Management In Cloud Computing

## **Course Outcomes:**

- 1. Define Cloud Computing and memorize the different Cloud service and deployment models
- 2. Describe the importance of virtualization along with their technologies.
- 3. Use and Examine different cloud computing services
- 4. Analyze the components of open stack & Google Cloud platform and understand Mobile Cloud Computing
- 5. Describe the key components of Amazon web Service
- 6. Design and develop resources management In Cloud Computing

| Sr.<br>No. | Module                                | Detailed Content                                                                                                                                                                                                                                                                                                | Hours | CO<br>Mapping |
|------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| I          | Introduction to<br>Cloud<br>Computing | Introduction to Cloud Computing, Cloud<br>Characteristics, Cloud Computing Components,<br>Comparing of Cloud Computing with Peer to Peer<br>architecture, Client Server, Distributed, Grid, Cloud<br>Deployment model (Cloud types- Public, Private,<br>Community, Hybrid), Service Models-<br>(IaaS,PaaS,SaaS) | 04    | CO1           |
| Π          | Virtualization                        | Introduction & benefit of Virtualization –<br>Implementation Levels of Virtualization- VMM<br>Design Requirements and Providers– Virtualization<br>at OS level – Middleware support for<br>Virtualization– Virtualization structure/tools and<br>mechanisms: Hypervisor and Xen Architecture,                   | 07    | CO2           |

|    |                                    | Binary Translation with full Virtualization, Para<br>Virtualization with Compiler Support - CPU<br>Virtualization – Memory Virtualization and I/O<br>Virtualization – Virtualization in Multicore<br>processors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |
|----|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Π  | Cloud<br>Computing<br>Services     | Compute Services - Amazon Elastic Compute<br>Cloud, Google Compute Engine, Windows Azure<br>Virtual Machines Storage Services - Amazon<br>Simple Storage Service, Database Services -<br>Amazon Relational Data Store, Amazon<br>DynamoDB, Application Services - Application<br>Runtimes & Frameworks, Queuing Services, Email<br>Services, Notification Services, Media Services<br>,Content Delivery Services - Amazon CloudFront,<br>Windows Azure Content Delivery Network<br>Analytics Services - Amazon Elastic MapReduce,<br>Deployment & Management Services - Amazon<br>Elastic Beanstalk, Amazon CloudFormation<br>Identity & Access Management Services - Amazon<br>Identity & Access Management,<br>Open Source Private Cloud Software - CloudStack, | 10 |  |
|    | Cloud                              | Eucalyptus, OpenStack<br>Design Considerations for Cloud Applications -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |  |
| IV | Application<br>Design              | Scalability, Reliability & Availability, Security,<br>Maintenance & Upgradation, Performance<br>Cloud Application Design Methodologies - Service<br>Oriented Architecture, Cloud Component Model,<br>IaaS, PaaS and SaaS services for cloud<br>applications, Model View Controller, RESTful<br>Web Services,<br>Data Storage Approaches - Relational (SQL)<br>Approach, Non-Relational (No-SQL) Approach                                                                                                                                                                                                                                                                                                                                                          | 06 |  |
| v  | Cloud Security                     | AAA Administration for Clouds -AAA model –<br>SSO for Clouds – Authentication management and<br>Authorization management in clouds – Accounting<br>for Clouds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06 |  |
| VI | Cloud<br>Computing<br>Applications | Cloud Computing for Health care, Education,<br>Transportation, Manufacturing Industry, Energy<br>System, Mobile Computing Multimedia Cloud -<br>Introduction, Streaming Protocols - RTMP<br>Streaming, HTTP Live Streaming, HTTP Dynamic<br>Streaming Case Studies - Live Video Streaming                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06 |  |

| App, Video Transcoding Ap<br>FOG Computing | Edge Computing, |
|--------------------------------------------|-----------------|
|--------------------------------------------|-----------------|

# **Detailed Lab Syllabus**

# Lab Prerequisite:

# Software Requirements: XEN/ VmwaresEXSi, Open Stack,GoogleappEngine/ Windows Azure, Amazon Web Service

| Sr.<br>No. | Level <ol> <li>Basic</li> <li>Design</li> <li>Advanced</li> <li>Project/Case<br/>Study/Seminar</li> </ol> | Detailed Lab/Tutorial Description                                                                                          | Hours |
|------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|
| 1          | Basic                                                                                                     | Study of NIST model of cloud computing.                                                                                    | 02    |
| 2          | Basic                                                                                                     | Understand different types of virtualizations, Host and<br>bare metal hypervisors and implement horizontal<br>scalability. | 02    |
| 3          | Basic                                                                                                     | Install Google App Engine. Create a hello world app and other simple web applications using python/java.                   | 02    |
| 4          | Design                                                                                                    | Use GAE launcher to launch the web applications.                                                                           | 02    |
| 5          | Design                                                                                                    | Working and Installation of Microsoft Azure                                                                                | 02    |
| 6          | Design                                                                                                    | Simulate identity management in a private cloud.                                                                           | 02    |
| 7          | Design                                                                                                    | Explore Storage as a Service for remote file access using web interface                                                    | 02    |
| 8          | Advanced                                                                                                  | Deploy web applications on commercial cloud                                                                                | 02    |
| 9          | Advanced                                                                                                  | To create and access VM instances and demonstrate various components such as EC2, S3                                       | 02    |
| 10         | Advanced                                                                                                  | To demonstrate components SimpleDB,<br>DynamoDB.                                                                           | 02    |

**Theory Assessment:** 

## **Internal Assessment for 40 marks**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

## **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

#### Lab Assessments:

- 1. Term work Assessment: At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorial and mini-projects (if included) are graded from time to time.
- **2. Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

| Course Code | Course Name                                          | Credits |
|-------------|------------------------------------------------------|---------|
| IL 480      | Digital Business Management and Digital<br>Marketing | 3       |

Syllabus under preparation

| Course Code | Course Name              | Credits |
|-------------|--------------------------|---------|
| IL 481      | Medical Image Processing | 3       |

- 1. To introduce the learners to the basic theory of digital image processing.
- 2. To expose learners to various available techniques and possibilities of this field.
- 3. To prepare learners to formulate solutions to general image processing problems.

Outcomes: Learner will be able to...

- 1. Record, extract and analyse key information about teeth, muscles, bones etc
- 2. Acquire the fundamental concepts of a digital image processing
- 3. Analyze images in the spatial and frequency domain.

# **Theory Syllabus**

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1      | Medical Imaging Systems:<br>Properties, advantages and disadvantages of X-rays based imaging systems,<br>Magnetic Resonance Imaging (MRI) imaging, Gamma-rays based imaging<br>systems, Positron emission tomography (PET), Single-photon emission<br>computerized tomography (SPECT) scan, Computed Tomography (CT) scan,<br>Ultrasound (sonography), Endoscopy, and Thermography based imaging<br>systems. Difference between different medical imaging systems.<br>Nature of Biomedical images, Objectives of biomedical image analysis,<br>Difficulties in biomedical image acquisition and analysis. | 7   |
| 2      | <b>Medical Imaging Toolkits:</b> ImageJ (and/or FIJI), ITK-Snap, SimpleITK, MITK, FreeSurfer, SLICER, OsiriX. Image Formats: dicom (.dcm), Nifti (.nii), Minc (.mnc), Analyze (img/hdr), Raw (.raw), MHD (.mhd) and MHA (.mha)                                                                                                                                                                                                                                                                                                                                                                            | 5   |
| 3      | <b>Medical Image Detection and Recognition:</b> Medical image parsing, Deep Learning for Medical Image Recognition, Automatic Interpretation of Carotid Intima–Media Using Convolutional Neural Networks, Deep Cascaded Networks for Sparsely Distributed Object Detection, Deep Voting and Structured Regression for Microscopy Image Analysis.                                                                                                                                                                                                                                                          | 6   |

| 4 | <b>Medical Image Registration:</b> Intensity-based methods, Cost functions - correlation, least squares, mutual information, robust estimators. Optimization techniques - fixed-point iteration, gradient descent, Nelder-Mead simplex method. MRI motion compensation, Convolutional Neural Network for Robust and Real-Time 2-D Registration                                                               | 6 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 5 | Medical Image Segmentation Networks:<br>Comparative study and analysis of U-Net family of segmentation: U-Net, V-Net,<br>3D U-Net, H-DenseUNet, GP-Unet, UNet++, MDU-Net, DUNet, RA-UNet,<br>nnU-Net, SUNet, IVD-Net, LADDERNET, Attention U-Net, R2U-Net,<br>MultiResUNet, U-NetPlus, CE-Net, CIA-Net, U2-Net, ScleraSegNet, AHCNet,<br>MFP-Unet, ResUNet-a, RAUNet, 3D U2-Net, SegNAS3D, U^2-Net, UNET 3+. | 9 |
| 6 | <b>Deep Learning for Healthcare:</b> Deep learning for different healthcare applications: Diabetic Retinopathy, Knee Osteoarthritis, Histological and Microscopic Elements Detection, Gastrointestinal Diseases Detection, Cardiac Imaging. Lesion detection: Brain tumor detection, prostate lesion detection, Lung nodule detection.                                                                       | 6 |

# **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

# **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

- 1. W. Birkfellner, Applied Medical Image Processing: A Basic Course, CRC Press, Second Edition, 2014
- 2. Bankman, Handbook of Medical Image Processing and Analysis, Academic Press Second Edition, 2008
- 3. Rangaraj M. Rangayyan, "Biomedical Image Analysis", CRC Press, 2000.
- 4. Zhou et al "Deep learning for Medical image analysis" Elsevier 2018.
- 5. R. C. Gonzalez, Digital Image Processing, Pearson Education India , Third Edition, 2013
- 6. S. Jayaraman, T. Veerakumar, S. Esakkirajan, Digital Image Processing, McGraw Hill Education , 2017
- 7. A K Jain, "Fundamental of Digital Image Processing", Prentice Hall, 2002.

| Course Code | Course Name                        | Credits |
|-------------|------------------------------------|---------|
| IL 482      | Technologies for Rural Development | 3       |

- 1. To understand the nature and characteristics of rural resources and its importance in Rural Development.
- 2. To understand various technologies required for Rural Development

Outcomes: Learner will be able to...

- 1. Understand various natural resources and their importance in rural development.
- 2. Get exposure to various challenges and problems with regard to availability and use of natural resources.
- 3. Develop and implement various technologies for rural development
- 4. Explore various schemes for rural development

# **Theory Syllabus**

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hours |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1      | Nature and Characteristics of Rural Resources: Land Resources. water<br>Resources, Living Resources, Human Resources<br>Definition and meaning of Resources, Types of Rural Resources, Natural<br>and Man-made, Characteristics of Resources, Importance of different<br>resources in Rural Development.                                                                                                                                                                                                                                                                                                                                                                                                 | 8     |
| 2      | <b>Concept of Information and Communication Technologies (ICT's)</b><br>Evolution of ICT's, Communication Functions of ICT's, Nature and Scope<br>of ICT's, Information Haves and Information Have Nots in the Rural Areas,<br>Strengths and Weaknesses of ICT's in Rural India, Application of ICT's for<br>Rural Development in India, Management Information System for Rural<br>Development in India, Success Stories relating to ICT for Rural<br>Development (Andhra Pradesh, Tamil Nadu, Kerala and Karnataka<br>Experiments), Satellite Communication support for Rural Development,<br>Telecommunication support for Rural Development, Computer<br>Communication support for Rural Development | 10    |
| 3      | Crop production technology /Processing Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8     |

|   | for major cereal crops viz., paddy, wheat, maize, pearl millet, sorghum,<br>etc.; Major varieties, sowing time, method of sowing, spacing, inter<br>culturing, fertilizer and water requirement, time of harvest, maturity index,<br>yield potential, cost of cultivation, income from production, etc. Rural<br>Energy system Technologies for Water treatment |   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | <b>The Role of Rural Technology</b> –<br>Need & importance of rural Technology, appropriate rural Technology,<br>Technology for Rural Women, difficulties in adoption of rural technology.                                                                                                                                                                      | 6 |
| 5 | <b>Globalisation of Rural Economy-</b><br>Globalisation and aims and objectives; Impact of Globalisation on rural<br>economy, Contract farming, corporate farming, SEZ's and Agriculture.<br>Agricultural value chain                                                                                                                                           | 6 |
| 6 | Government Schemes, initiatives and participation of various<br>Stake holders for development and Protection of Rural resources                                                                                                                                                                                                                                 | 4 |

# **Theory Assessment:**

## **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

## **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

- 1. Rural Development: Principles, Policies and Management, Katar Singh, Sage Publications India Pvt. Ltd., 2009
- 2. Development of Land Resources Ebook on Activities Department of Land Resources, Ministry of Rural Development, Government of India, Dec. 2014,
- 3. Http://dolr.nic.in/downloads/PDFs/DoLR%20Activities.pdf
- 4. S.S. Singh., Principles and Practices of Agronomy. 1985. Kalyani Publishers, Ludhiana
- 5. Indian Economy by Datt, Rudra &Sundharam, New Delhi: S. Chand, 2008.
- 6. W.T.O and Indian Economy by Deogirikar, A. B. Jaipur: Shri Niwas Publications, 2004

| Course Code | Course Name | Credits |
|-------------|-------------|---------|
| IL 483      | Economics   | 3       |

- 1. Provide a good grounding in the basic concepts of Micro and Macroeconomics.
- 2. Familiarize learners with concepts of demand, supply, price, income and equilibrium.
- 3. Teach students to represent the Indifference curve in regular as well as in exceptional cases with respect to consumer behaviour, consumer preferences and Risk Aversion.
- 4. To inculcate the skills required to understand the concept of Production function with single and two variable inputs.
- 5. To create an awareness of the different market structures and its impact on the price and output of a product.
- 6. To prepare the learners in understanding the Keynesian System of Money, Interest and Income and its impact in society with respect to Inflation.

Outcomes: Learner will be able to...

- 1. Acquire conceptual and theoretical knowledge of Micro and Macroeconomics and learn to think critically about issues and topics of the subject.
- 2. Demonstrate the understanding of the concepts of demand, supply, price, income and equilibrium and relate it to the existing scenario in the society.
- 3. Perform successfully in representing the Indifference curve in relation to the prevalent consumer behaviour and consumer preferences.
- 4. Illustrate the skills required for maximising output and minimising cost for effective production.
- 5. Determine the importance of the existence of different market structures and its impact in society.
- 6. Develop an understanding of the Keynesian System of Money, Interest and Income and formulate anti- inflationary policies.

# **Theory Syllabus**

| Module | Detailed Contents                                                                                                                                                                                                               | Hours |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1      | Introduction to Micro and Macro Economics                                                                                                                                                                                       | 5     |
| 2      | Demand & Supply: Concept of demand & supply functions, Price, Income & Cross elasticities of demand, Elasticity of Supply, Market demand functions, Concept of equilibrium, Impact of changes in demand & supply on equilibrium | 7     |

| 3 | Theory of Consumer Behaviour: Concept of cardinal and ordinal utility, consumer's equilibrium, Consumer's preferences, Risk Aversion and Indifference Curve Analysis, & its properties, Shapes of Indifference Curves in exceptional cases                                                                                                                                                                                                        | 7 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | The Theory of Production: Concept of Production function, Production with<br>a single variable input, Production with two variable inputs, Optimal input<br>combination, Constrained output maximization, Cost minimization, Elasticity<br>of substitution                                                                                                                                                                                        | 6 |
| 5 | Theory of Cost: Different concept of cost, Short-run and Long- run cost<br>analysis, modern concept. Market Structures a. Perfect Competition Short-run<br>and long-run equilibrium of the firm and Industry, Stability of equilibrium,<br>Concept of imperfect competition; short run and long run price and output<br>decisions of a monopoly firm; concept of a supply curve under monopoly;<br>comparison of perfect competition and monopoly | 4 |
| 6 | The Keynesian System: Money, Interest and Income Money in the Keynesian<br>theory, Interest Rate Determination (Liquidity Preference Theory), Money<br>Market, Bond market and Commodity Market, Monetary policies and fiscal<br>policies, Inflation and Unemployment Inflation, Role and Effects of inflation,<br>Anti- inflationary policies                                                                                                    | 7 |

## **Theory Assessment:**

## **Internal Assessment for 40 marks:**

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

## **End Semester Examination: 60 Marks**

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

- **1.** Dr.Samwel Nyagucha Ores. (2019). Micro and Macro Economics: Understanding the Basics of Economics. New Generation Publishing.
- 2. Daron Acemoglu and James A. Robinson. (2013). Why Nations Fail: The Origins of Power, Prosperity and Poverty. Profile BooK

| Course Code | Course Name            | Credits |
|-------------|------------------------|---------|
| IL 484      | GIS and Remote Sensing | 3       |

- 1. To gain basic understanding of GIS and remote sensing techniques
- 2. To understand basic software such as QGIS used for GIS analysis
- 3. To understand various GIS data sources, their processing and interpretation

**Outcomes:** Learner will be able to...

- 1. Know and apply GIS and remote sensing concepts to real world problems
- 2. Learner will become proficient in using Python and QGIS to conduct geospatial analysis

Prerequisites: Knowledge of Python or other software programming language

| Module | Detailed Contents                                                                                                                                        | Hrs |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1      | Introduction to GIS Mapping. GIS Data models and modelling, Maps and Databases, GIS data types (vector, raster etc), Geographic coordinate systems,      | 10  |
| 2      | Introduction to QGIS software, GIS data sources,<br>Digitizing data, Georeferencing.                                                                     | 10  |
| 3      | Spatial Analysis techniques vector and raster analysis and tools.                                                                                        | 20  |
| 4      | Satellite images, electromagnetic energy and remote sensing, satellites and sensors, arial cameras, surveys using drones, multispectral scanners, LIDAR. | 10  |
| 5      | Applications of GIS in industry, governments, NGOs etc                                                                                                   | 10  |

## Assessment Scheme:

Internal Assessment: Course will have 6 take home assignments worth 10% of the final grade

End Semester Examination: Will have a final exam worth 40% of the final grade

## **References:**

Principles of Remote Sensing: An Introductory Textbook (<u>https://webapps.itc.utwente.nl/librarywww/papers\_2009/general/principlesremotesen\_sing.pdf</u>) Principles of GIS (https://webapps.itc.utwente.nl/librarywww/papers\_2009/general/principlesgis.pdf)

| Course Code | Course Name                          | Credits |
|-------------|--------------------------------------|---------|
| IL 485      | Physical Education, Fitness & Sports | 3       |

- 1. To understand the components of Physical Fitness.
- 2. To understand the modern development and social aspects of physical education
- 3. To understand general troop games, recreational games and the importance of playing to achieve health & wellness.
- 4. To acquaint students with principles of nutrition and the application of human energy.
- 5. To understand the role of food in physical performance.
- 6. To understand the need for wellness & weight management.
- 7. To understand common sports injuries, first aid & their treatment.
- 8. To understand the application of Yoga in physical education & sports.
- 9. To enable the student to understand the basic structure & function of the human body and the effect of exercise on the body as a whole.

Outcomes: Learner will be able to ...

- 1. Maintain a health-enhancing level of fitness throughout the program as well as be able to collect and analyse personal fitness data.
- 2. Gain knowledge regarding the application of yoga to Physical Education and Sports
- 3. Understand the anatomy and Physiology of Asanas and Pranayamas.
- 4. Acquire the knowledge regarding the effect of exercise on the body as a whole
- 5. Develop an understanding of the concept of personality, factors affecting personality development
- 6. To understand proportional body weights and their management
- 7. To understand nutrition and balance diet

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1      | <ul> <li>Physical Fitness</li> <li>1. Concept, definition and meaning of Physical fitness, activity and exercise</li> <li>2. Component of Physical fitness, Benefit of Physical fitness &amp; exercise.</li> <li>3. Principles of physical fitness</li> <li>4. Definition and concept of wellness and factors affecting Physical fitness &amp; wellness</li> <li>5. Concept and importance of physical conditioning, warming up and cooling down of all age groups</li> </ul>                                                                                                                                | 8   |
| 2      | <ul> <li>Nutrition and Dietary Requirement</li> <li>1. Nutrition components and balanced diet</li> <li>2. Meaning and definition of doping and ergogenic aids</li> <li>3. Prevention and first-aid of common injuries during Physical training</li> <li>4. Need of Energy, Carbohydrate and Protein</li> <li>5. Concept training nutrition and competition nutrition</li> </ul>                                                                                                                                                                                                                              | 6   |
| 3      | <ul> <li>Wellness, Weight management and Holistic health</li> <li>1. Meaning, concept and components of Wellness</li> <li>2. Manipulation of energy balance to induce weight loss and weight gain</li> <li>3. Methods of weight management</li> <li>4. Concept, types and cause of obesity and its management.</li> <li>5. Waist hip ratio, larger heart, BMI, calculation of Training Heart Rate</li> </ul>                                                                                                                                                                                                 | 6   |
| 4      | <ol> <li>Human body system, function and effect of exercise</li> <li>Meaning and Importance of the study of Human anatomy in physical education &amp; sports</li> <li>Classification and functions of bones and joints</li> <li>Movements of various joints</li> <li>Structural classification of muscle, types of muscle and effect of exercise on the musculoskeletal system.</li> <li>Structure and Effect of exercise on the cardiorespiratory system</li> <li>Digestion and effect of exercise on the digestive system</li> <li>Nervous system and effect of exercise on the nervous system.</li> </ol> | 6   |

| 5 | <ol> <li>Yoga and meditation</li> <li>Concept of Yoga and misconception about Yoga</li> <li>Comparison of Physical Education exercise and Yogic exercise.</li> <li>Meaning, Types and principles of Meditation</li> <li>Principlesgoverning various exercises in Yoga(Asana, Pranayam,<br/>Bandha, Mudra, Kriya)</li> <li>Yoga for stress management and emotional stability</li> <li>Application of Yoga in sports &amp; physical education and effect of Yogic<br/>exercise on different systems of the human body.</li> </ol> | 8 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 6 | <ul> <li>General &amp; recreational troop games and its method of skill training</li> <li>1. The game soccer and its rules and regulation</li> <li>2. The game Volleyball, Basketball and its rules and regulations</li> <li>3. The Indoor games and their rules and regulations</li> <li>4. Method of sports skill developing training 6.5Recreational games and their importance in day to day life</li> </ul>                                                                                                                 | 6 |

## Assessment Scheme:

# **Term Papers(40 Marks):**

Two theory papers will be conducted for 40 marks each with average marks of both papers as the final score. One hour theory paper as per the pattern of the semester-end examination will be conducted.

# **Projects/Assignments(30 Marks):**

Project on Nutrition (10 Marks): The learner will be given one project on the calculation of Basel metabolic rate. He /she will submit the report of the same in a prescribed format based on which the learner will be evaluated for 10 marks by the concerned teacher/s

Projects/Assignment on Yoga education (10 Marks): The learner will be given an assignment on yoga education such as gathering/compiling the information about the various aspects of asanas and asking to prepare and submit the report of the same based on which the concerned subject teacher will give marks out of 10.

Assignments on Sports Injuries (10 Marks): The learner will be given two assignments on the specific sports injuries and their remedial aspects based on the report submitted in the prescribed format by him/her as well as observations, the concerned teacher/s will give marks out of 10.

# **Physical Activities**(25 Marks):

To perform 8 Asanas in a group (10) To perform one Pranayama and one Kriyas(5) To perform any five exercises of Motor Fitness. (5) To perform any five exercises of HRPF(5) **4. Trekking/ Hiking (05 Marks)**- The learner should be provided experience of participating in the organization and the actual conduct of the co-curricular activities viz. Hiking/Trekking and the assessment of 05 marks should be done based on learners actual participation and involvement in the same.

- 1. Padmakshan Padmanabhan 'Handbook of Health & Fitness', Indus Source; First edition, Indus Source Books, Wadala Mumbai. 2014.
- 2. Adams, William.C. 'Foundation of Physical Education Exercises and Sports Sciences', Lea and Febigor, Philadelphia, 1991.
- 3. Dr. Kamlesh M.L. 'Principles and History of Physical Education and Sports', Friends Publication (India) New Delhi, 2004
- 4. Bates M. 'Health Fitness Management (2nd Ed.) USA : Human Kinetics.2008
- 5. Fink, H.H., Burgoon, L.A., & Mikesky. Practical Applications in Sports Nutrition. Canada : Jones and Bartlett Publishers. 2006.
- 6. Worthington, Vivian. History of Yoga. London : Routledge and Kegan Paul Ltd. 1982.
- 7. Rajan, M. Yoga Stretching and Relaxation for Sportsman. Delhi : Allied publishers. 1985.
- 8. Crouch James E. Essential Human Anatomy A Text Lea & Febriger, Philladalphia
- 9. Murgesh N. Anatomy, Physiology and Health Education, Sathya, Chinnalapatti, 1990
- 10. Giam, C.K. Sport Medicine Exercise and Fitness. Singapore : P.G. Medical Book.

| Course Code | Course Name                     | Credits |
|-------------|---------------------------------|---------|
| IL 486      | <b>Environmental Management</b> | 3       |

- 1. To promote the safety, health, and welfare of people and the environment through engineering professionals.
- 2. To encourage students to be productive and contributing members of the environmental profession as practitioners, entrepreneurs, researchers, or teachers.
- 3. To develop environmental awareness among students that meet specified engineering needs with consideration of public health, safety, and welfare, as well as global, environmental, and legal factors.

# **Outcomes:**

On successful completion of the course learner/student will be able to:

- 1. Understand core concepts and methods from ecological sciences and their application in environmental problem-solving.
- 2. Recognize different types of toxic substances and analyze toxicological information
- **3.** Acquire and apply environmental knowledge to the engineering field as needed.
- 4. Assist industries and projects in obtaining environmental clearance and compliance with other environmental laws.
- **5.** Interpret appropriate environment-related legislation.
- 6. Develop a thorough understanding of practice and procedure followed by various enforcing agencies/bodies/countries.

| Module | Detailed Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1      | <b>Fundamentals of Environmental Sciences</b><br>Definition, Principles, and Scope of Environmental Science. Structure and<br>composition of the atmosphere, hydrosphere, lithosphere, and biosphere.<br>Concept of Ecology- Ecosystem, Food chain, Food web, Ecological pyramid,<br>Ecological succession, limiting factor, and carrying capacity.<br>Global Environmental Concerns (Global warming, Loss in Bio-diversity, Ozone<br>depletion, E-waste management) and Renewable Energy Resources (Solar<br>Energy, Wind Energy, Hydrothermal Energy, etc.) | 8   |
| 2      | <b>Environmental Chemistry</b><br>Toxic chemicals: Pesticides and their classification and effects. Biochemical<br>aspects of heavy metals (Hg, Cd, Pb, Cr) and metalloids (As, Se), Sewage<br>treatment, Concept of DO, BOD, and COD.<br>Composition of air-chemical processes in the formation of inorganic and organic<br>particulate matter, Thermochemical and photochemical reactions in the<br>atmosphere, Oxygen and Ozone chemistry. Photochemical smog, Air Quality<br>Index                                                                        | 8   |
| 3      | <b>Fundamentals of Environmental Management</b><br>Concept of Environmental Management, Need & Objective of Environmental<br>Management, Role of Engineers in Environmental Management, Career<br>Opportunities.<br>The need for sustainable development, Sustainable Development Goals                                                                                                                                                                                                                                                                       | 5   |
| 4      | Scope of Environmental Management<br>Role and functions of Government as a planning and regulatory agency.<br>Environment Quality Management and Corporate Environmental Responsibility.<br>Total quality Environmental management: ISO 14000, EMS Certification.<br>Environmental Management System Standards (ISO-14000 series).<br>Environment and Social Management Plan                                                                                                                                                                                  | 7   |

| 5 | <b>Overview of Environmental Laws in India</b><br>Constitutional provisions in India (Articles 48A and 51A). Wildlife Protection<br>Act, 1972 Indian Forest Act, Water (Prevention and Control of Pollution) Act,<br>Air (Prevention and Control of Pollution) Act, Environmental (Protection) Act,<br>1986, The e-waste (Management) Rules 2016, | 5 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 6 | <b>Environmental Conventions and Agreements</b><br>Stockholm Conference on Human Environment 1972, Montreal Protocol, 1987,<br>Earth Summit at Rio de Janeiro, 1992, Agenda-21, Convention on Biodiversity<br>(1992), UNFCCC, Kyoto Protocol, 1997, Copenhagen Summit, Paris Agreement,<br>CITES.                                                 | 6 |

#### Assessment Scheme:

#### **Internal Assessment:**

Assessment consists of two class tests of 40 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and the second class when 80% syllabus over.

#### **End Semester Examination:**

In the question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

- 1. The question paper will comprise 5 questions, each carrying 15 marks.
- 2. Question number 1 will be compulsory and based on the maximum contents of the syllabus
- 3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
- 4. A total of four questions need to be solved.

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G.Oakwell, Edward Elgar Publishing
- 3. Environmental Management, V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Macmillan India,2000

| Subject Code | Subject Name    | Credits |
|--------------|-----------------|---------|
| ET 492       | Major Project C | 04      |

## **Course Objectives:**

- 1. The primary objective is to meet the milestones formed in the overall project plan decided in Major Project B.
- 2. The idea presented Major Project B in should be implemented in Major Project C with results, conclusion and future work.
- 3. The project will culminate in the production of a thesis by each individual student.

# Course Outcomes: Upon successful completion of this course, the learner will be able to

- 1. Discover potential research areas in the field of Electronics & telecommunication engineering.
- 2. Conduct a survey of several available literature in the preferred field of study.
- 3. Compare and contrast the several existing solutions for research challenges.
- 4. Demonstrate an ability to work in teams and manage the conduct of the research study.
- 5. Formulate and propose a plan for creating a solution for the research plan identified.
- 6. To report and present the findings of the study conducted in the preferred domain.

# **Guidelines:**

## **Project Report Format:**

At the end of the semester the student needs to prepare a project report which should be prepared as per the guidelines issued by the department. Along with the project report a CD containing: project documentation, Implementation code, required utilities, Software's and user Manuals need to be attached.

## **Term Work:**

- Students have to submit a weekly progress report to the internal guide and the internal guide has to keep a track on the progress of the project and also has to maintain the attendance report. This progress report can be used for awarding the term work marks. In case of industry projects, visits by internal guides will be preferred to get the status of the project. Distribution of marks for term work shall be as follows:
- a. Weekly Attendance on Project Day
- b. Project work contributions as per objective
- c. Project Report (Hard Bound)
- d. Term End Presentation (Internal) The final certification and acceptance of TW ensures the satisfactory performance on the above aspects.

## **Oral Exam:**

Oral examination of Major Project C should be conducted by Internal and External Examiners. Students have to give a presentation and demonstration on Major Project C.