Mahatma Education Society's

Pillai College of Engineering

(Autonomous)

Affiliated to University of Mumbai

Dr. K. M. Vasudevan Pillai's Campus, Sector 16, New Panvel 410 206.

Department of Electronics and Telecommunication Engineering

Syllabus

of

B.Tech. in Electronics and Telecommunication Engineering

for

The Admission Batch of AY 2023-24

First Year - Effective from Academic Year 2023-24

Second Year - Effective from Academic Year 2024-25

Third Year - Effective from Academic Year 2025-26

as

per

Choice Based Credit and Grading System

Mahatma Education Society's

Pillai College of Engineering

Vision

Pillai College of Engineering (PCE) will admit, educate and train a diverse population of students who are academically prepared to benefit from the Institute's infrastructure and faculty experience, to become responsible professionals or entrepreneurs in a technical arena. It will further attract, develop and retain, dedicated, excellent teachers, scholars and professionals from diverse backgrounds whose work gives them knowledge beyond the classroom and who are committed to making a significant difference in the lives of their students and the community.

Mission

To develop professional engineers with respect for the environment and make them responsible citizens in technological development both from an Indian and global perspective. This objective is fulfilled through quality education, practical training and interaction with industries and social organizations.

Dr. K. M. Vasudevan Pillai's Campus, Sector - 16, New Panvel - 410 206

Department of Electronics and Telecommunication Engineering

Vision

Strive towards producing world class engineers who will continuously innovate, upgrade telecommunication technology and provide advanced, hazard-free solutions to the mankind. Inspire educate and empower students to ensure green and sustainable society.

Mission

Benchmarking against technologically sound global telecommunication institutions with a view towards continuous improvement. Continually exposing students to scenarios that demand structuring of complex problems and proposing solutions. Educate students and promote values that can prevent further degradation of our planet. Becoming responsible citizens genuinely concerned with and capable of contributing to a just and peaceful world.

Program Educational Objectives (PEOs):

- I. Provide graduates with a strong foundation in mathematics, science and engineering fundamentals to enable them to analyze and solve challenging problems in Electronics and Telecommunication Engineering
- II. Impart analytic and thinking skills to develop innovative ideas in the field of Telecommunication Engineering
- III. To keep students up to date with the latest advancements in the field of Electronics and Telecommunication
- IV. Inculcate qualities of leadership skills, multidisciplinary teamwork and an ability to adapt to evolving professional environment in the field of Engineering and Technology
- V. To create awareness among the students towards ethical, social and environmental issues in the professional career

Program Outcomes:

Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs):

- 1. Able to understand the concept of Basic Electronics, Network and Circuit Analysis, Analog and Digital circuits, Signals and System, Electromagnetics and apply them in various areas like Microwave Engineering, Wireless Communication, Digital image processing, Advance Communication systems etc.
- 2. Able to use techniques, skills, software, equipments and modern engineering tools necessary for Electronics and Telecommunication Engineers to identify, formulate and solve problems in industries and research work.
- 3. Able to work in a multidisciplinary environment to provide socially acceptable technical solutions for complex communication engineering problems.

The Autonomous status of the institute has given an opportunity to design and frame the curriculum in such a way that it incorporates all the needs and requirements of recent developments in all fields within the scope of the Technical education. This curriculum will help graduates to attain excellence in their respective field. The curriculum has a blend of basic and advanced courses along with provision of imparting practical knowledge to students through minor and major projects. The syllabus has been approved and passed by the Board of Studies.

Outcome based education is implemented in the academics and every necessary step is undertaken to attain the requirements. Every course has its objectives and outcomes defined in the syllabus which are met through continuous assessment and end semester examinations. Evaluation is done on the basis of Choice Based Credit and Grading System (CBCGS). Optional courses are offered at department and institute level. Selection of electives from the same specialization makes the student eligible to attain a B. Tech. degree with respective specialization.

Every learner/student will be assessed for each course through (i) an Internal/Continuous assessment during the semester in the form of either Practical Performance, Presentation, Demonstration or written examination and (ii) End Semester Examination (ESE), in the form of either theory or viva voce or practical, as prescribed by the respective Board Studies and mentioned in the assessment scheme of the course content/syllabus. This system involves the Continuous Evaluation of students' progress Semester wise. The number of credits assigned with a course is based on the number of contact hours of instruction per week for the course. The credit allocation is available in the syllabus scheme of each semester.

The performance of a learner in a semester is indicated by a number called Semester Grade Performance Index (SGPI). The SGPI is the weighted average of the grade points obtained in all the courses by the learner during the semester. For example, if a learner passes five courses (Theory/labs./Projects/Seminar etc.) in a semester with credits C1, C2, C3, C4 and C5 and learners grade points in these courses are G1, G2, G3, G4 and G5 respectively, then learners SGPI is equal to:

$$SGPI = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4 + C_5G_5}{C_1 + C_2 + C_3 + C_4 + C_5}$$

The learner's up to date assessment of the overall performance from the time s/he entered for the programme is obtained by calculating a number called the Cumulative Grade Performance Index (CGPI), in a manner similar to the calculation of SGPI. The CGPI therefore considers all the courses mentioned in the scheme of instructions and examinations, towards the minimum requirement of the degree learners have enrolled for. The CGPI at the end of this semester is calculated as,

$$CGPI = \frac{C_1G_1 + C_2G_2 + C_3G_3 + \dots + C_i * G_i + \dots + C_nG_n}{C_1 + C_2 + C_3 + \dots + C_i + \dots + C_n}$$

The Department of Electronics and Telecommunication Engineering offers a B. Tech. Programme in Electronics and Telecommunication Engineering. This is an eight semester course. The complete course is a 165 credit course which comprises core courses and elective courses. The elective courses are distributed over 6 specializations. The specializations are:

- 1. Group 1: Smart Robotics and IoT driven Application Development
- 2. Group 2: Product Design
- 3. Group 3: VLSI Chip Design Technology
- 4. Group 4: Advanced Communication System
- 5. Group 5: Cloud Computing
- 6. Group 6: Data Science

The students also have a choice of opting for Institute level specializations. These are

- 1. IP Management and Digital Business
- 2. Business Management
- 3. Bio Engineering
- 4. Bio Instrumentation
- 5. Engineering Design
- 6. Sustainable Technologies
- 7. Contemporary Studies
- 8. Art and Journalism
- 9. Applied Science
- 10. Green Technologies
- 11. Maintenance Engineering
- 12. Life Skills
- 13. Environment
- 14. Safety
- 15. Quantum Computing and Technologies

As minimum requirements for the credits to be earned during the B.Tech in Electronics and Telecommunication Engineering program, a student will have to complete a minimum of three specializations of which two are to be chosen from the department list and one has to be from the Institute level specialization list. In order to complete each specialization, a minimum of three courses from department list and two from institute list under that specialization has to be completed. The credit requirement for the B.Tech.in Electronics and Telecommunication Engineering course is tabulated in Table 1.

Table 1. Credit Requirement for B. Tech in Electronics and Telecommunication Engineering

Category	Credits
Humanities and Social Sciences including Management Courses	06
(HSSM)	
Basic Science Courses (BSC)	18
Engineering Science Courses including workshop, drawing, basics	17
of Electrical/ Mechanical/ Computer etc (ESC)	
Professional Core Courses (PCC), Program Specific Elective	75
Courses (PEC), Program Courses (PC)	
Institute Electives/Open Electives (OE)	06

Project work, Seminar and Internship in Industry or elsewhere	18
Community Engagement Project (CEP), Experiential Learning	
Courses	
Multidisciplinary Minor Subject (MDM)	08
Co-curricular Courses, Liberal Learning	04
Vocational Skill Courses (VSEC) / Skill Enhancement Courses	06
(SKILL)	
Ability Enhancement Courses (AEC), Indian Knowledge System	07
(IKS) and Value Education Courses (VEC)	
Total Credits	165

Semester I

Course	Course Name	Category	Course		ng Scheme ct Hours)	Credits Assigned			
Code	Course Name		Component	Theory	Practical /Tutorial	Theory	Practical /Tutorial	Total	
FY101	Engineering Mathematics I	BSC	TLP	3	2	3	1	4	
FY102	Engineering Physics I	BSC	TL	2	1	2	0.5	2.5	
FY103	Engineering Chemistry I	BSC	TL	2	1	2	0.5	2.5	
FY104	C Programming	ESC	Т	3	-	3)	3	
FY105	Basic Electrical Engineering	ESC	TL	3	2	3	1	4	
FY108	C Programming Lab	SKILL	LP	-	2		1	1	
FY111	Basic Workshop-I	SKILL	LP	-	2	-	1	1	
FY113	Indian Knowledge System	HSSM	Т	-	2+2#	-	2	2	
FY114	Co-curricular Course 1	Liberal Learning	L	-	4	-	2	2	
	Total			13	16	13	9	22	

Project Based

Examination Scheme Semester I

		Category	7		Th	eory					
Course Code	Course Name			intern ssessn		End Sem	Exam Duration	Term Work	Pract / Oral	Total	
			1	2	Avg	Exam	(Hrs)				
FY101	Engineering Mathematics I	BSC	40	40	40	60	2	25	-	125	
FY102	Engineering Physics I	BSC	30	30	30	45	2	25	-	100	
FY103	Engineering Chemistry I	BSC	30	30	30	45	2	25	-	100	
FY104	C Programming	ESC	40	40	40	60	2	-	-	100	
FY105	Basic Electrical Engineering	ESC	40	40	40	60	2	25	25	150	
FY108	C Programming Lab	SKILL	-	-	-	-	-	25	25	50	
FY111	Basic Workshop-I	SKILL	-	-	-	-	-	50	-	50	
FY113	Indian Knowledge System	HSSM	•	•	-	-	-	50	-	50	
FY114	Co-curricular Course 1	Liberal Learning	•	1	-	-	-	50	-	50	
	Total 7										

T- Theory, L- Lab, P-Programming, C- Communication

Semester II

Course	Course Name	Category	Course		ng Scheme ect Hours)	Credits Assigned		
Code	Course Name		Component	Theory	Practical /Tutorial	Theory	Practical /Tutorial	Total
FY115	Engineering Mathematics II	BSC	TLP	3	2	3	1	4
FY116	Engineering Physics II	BSC	TL	2	1	2	0.5	2.5
FY117	Engineering Chemistry II	BSC	TL	2	1	2	0.5	2.5
FY107	Engineering Mechanics and Graphics	ESC	TL	3	2	3	O	4
FY119	Python Programming	PC	TLP	3	-	3	-	3
FY121	Professional Communication & Ethics I	HSSM	TL	1	2	1	1	2
FY122	Python Programming Lab	SKILL	LP	-	2	_	1	1
FY123	Basic Workshop-II	SKILL	LP	- (2	-	1	1
FY125	Co-curricular Course II	Liberal Learning	L	-	4	-	2	2
	Total			14	16	14	08	22

Examination Scheme Semester II

			1		Theor	r y				
Course Code	Course Name	Category	Interna	l Assessi	ment	End	Exam	Term Work	Pract/ Oral	Total
Code			1	2	Avg	Sem Exam	Duration (Hrs)	WUIK	Orai	
FY115	Engineering Mathematics II	BSC	40	40	40	60	2	25	-	125
FY116	Engineering Physics II	BSC	30	30	30	45	2	25	-	100
FY117	Engineering Chemistry II	BSC	30	30	30	45	2	25	-	100
FY107	Engineering Mechanics and Graphics	ESC	40	40	40	60	2	25	25	150
FY119	Python Programming	Program Courses	40	40	40	60	2	1	-	100
FY121	Professional Communication & Ethics I	HSSM	20	20	20	30	1	25	-	75
FY122	Python Programming Lab	SKILL	1	ı	-	-	1	25	25	50
FY123	Basic Workshop-II	SKILL	1	1	-	-	ı	50	-	50
FY125	Co-curricular Course II	Liberal Learning	-	-	-	-	-	50	-	50
	Total 8									

T-Theory , L-Lab , P-Programming, C-Communication

Semester III

Course	Course Name	Category Course			ing Scheme act Hours)	Credits Assigned			
Code	Course Name		Component	Theory	Practical /Tutorial	Theory	Practical /Tutorial	Total	
ET201	Engineering Mathematics III	ESC	Т	3	2	3	1	3	
ET202	Electronics Devices	PCC	TL	3	2	3	1	4	
ET203	Network Theory	PCC	T	3	-	3	-	3	
ET204	Digital System Design	PCC	TL	3	2	3	1	4	
ET205	Personal Finance Management	VEC	Т	2	- (2	-	2	
ET206	Human Values and Social Ethics		Т	2	-	2	-	2	
ET291	Mini Project I	MD M	LC	-	2	-	2	2	
	Total			16	8	16	4	20	

Examination Scheme Semester III

		Category				Theory				
Course Code	Course Name			Assessment		End Sem Exam	Exam Duration	Term Work	Pract /Oral	Total
			1,	2	Avg	Lixaiii	(Hrs)			
ET201	Engineering Mathematics III	ESC	40	40	40	60	2	-	1	100
ET202	Electronics Devices	PCC	40	40	40	60	2	25	25	150
ET203	Network Theory	PCC	40	40	40	60	2		-	100
ET204	Digital System Design	PCC	40	40	40	60	2	25	25	150
ET205	Personal Finance Management	VEC	20	20	20	40	2	-	ı	60
ET206	Human Values and Social Ethics		-	-	1	-	-	50	1	50
ET291	Mini Project I	MD M	-	-	-	-	-	25	25	50
					Tota	ıl				660

T-Theory, L- Lab , P-Programming , C- Communication

Semester IV

Course	Course Name	Category	Course		ing Scheme act Hours)	Credits Assigned			
Code	Course Name		Component	Theory	Practical /Tutorial	Theory	Practical /Tutorial	Total	
ET207	Engineering Mathematics IV	ESC	Т	3	2	3	1	3	
ET208	Electronic Communication Systems	PCC	TL	3	2	3	1	4	
ET209	Signals and Systems	PCC	T	3	-	3	-	3	
ET210	Linear Integrated Circuits	PCC	Т	3	2	3	1	4	
ET211	Microprocessor and Microcontroller	MD M	TL	3	2	3	1	4	
ET212	Entrepreneurship	HSSM	Т	2	-	2	-	2	
ET292	Mini Project II	VSEC	LC	-	2	-	2	2	
	Total			18	8	17	5	22	

Examination Scheme Semester IV

		Category			0	Theory				
Course Code	Course Name			nter sessi	nal ment	End Sem	Exam Duration	Term Work	Pract / Oral	Total
			1	2	Avg	Exam	(Hrs)			
ET207	Engineering Mathematics IV	ESC	40	40	40	60	2	-	-	100
ET208	Electronic Communication Systems	PCC	40	40	40	60	2	25	25	150
ET209	Signals and Systems	PCC	40	40	40	60	2	-	-	100
ET210	Linear Integrated Circuits	PCC	40	40	40	60	2	25	25	150
ET211	Microprocessor and Microcontroller	MD M	40	40	40	60	2	25	25	150
ET212	Entrepreneurship	HSSM	20	20	20	30	1	-	-	50
ET292	Mini Project II	VSEC	_	_	-	-	-	25	25	50
VY					Total				_	750

T- Theory, L- Lab, P-Programming, C- Communication

Semester V

Course	Course Name	Category	Course		ng Scheme act Hours)	Cre	edits Assigne	ed
Code	Course Name		Component	Theory	Practical /Tutorial	Theory	Practical /Tutorial	Total
ET301	Digital Communication	PCC	TL	3	2	3	1	4
ET302	Discrete Time Signal Processing	PCC	T	3	-	3	-	3
ET303	Professional Communication and Ethics-II	HSSM	LC	1	2	-		2
ET304	Java Programming	MDM	TL	1	2	0 - /	1	1
ET3xx	Department Level Optional Course I A	PEC	TL	3	2	3	1	4
ET3xx	Department Level Optional Course II A	PEC	TL	3	2	3	1	4
IL3xx	Institute Level Optional Course I	OE	Т	3	-	3	-	3
ET391	Mini Project III	SKILL	LC	-	2	-	1	1
	Total		6	17	12	15	07	22

Examination Scheme Semester V

		Category				Theory	<u> </u>			
Course Code	Course Name		I	nter sessi		End Sem Exam	Exam Duration (Hrs)	Term Work	Pract/ Oral	Total
ET301	Digital Communication	PCC	40	40	40	60	2	25	25	150
ET302	Discrete Time Signal Processing	PCC	40	40	40	60	2	-	-	100
ET303	Professional Communication and Ethics-II	HSSM	ı	ı	ı	1	-	50	-	50
ET304	Java Programming	MDM	-	-	-	-	-	25	25	50
ET3xx	Department Level Optional Course I A	PEC	40	40	40	60	2	25	25	150
ET3xx	Department Level Optional Course II A	PEC	40	40	40	60	2	25	25	150
IL3xx	Institute Level Optional Course I	OE	40	40	40	60	2	-	-	100
ET391	Mini Project III	SKILL	_	_	-	-	-	25	25	50
					Total					800

T- Theory, L- Lab, P-Programming, C- Communication

Department Level Optional Course I A and Department Level Optional Course II A are to be chosen from any ONE Specialization

Specialization		Group I		Specialization		Group II	
Semester V Elective	Smart Robotics and IoT driven Application Development	Product Design	VLSI Chip Design Technology	emester V Elective	Advanced Communication System	Cloud Computing	Data Science
Course Code Course Name Department	ET305	ET306	ET307	Course Code Course Name Department	ET 308 Data Processing and Coding	ET310	ET311
Level Optional Course I A	IoT Basics and Smart sensors	PCB Design and Electronics Equipment Troubleshooting	Basics of VLSI Design	Level Optional Course II A	ET 309 TV and Video Engineering	Computer Communication and Network	Database Management System

Institute Level Optional Course I to be chosen from following any ONE Specialization

SN	Specialization	Course Code	Course Name
1	IP Management and Digital Business	IL 360	IPR and Patenting
2	Business Management	IL 361	E- Commerce and E-Business
3	Bio Engineering	IL 362	Introduction to Bioengineering
4	Bio Instrumentation	IL 363	Biomedical Instrumentation
5	Engineering Design	IL 364	Design of Experiments
6	Sustainable Technologies	IL 365	Design for Sustainability
7	Contemporary Studies	IL 366	Political Science
8	Art and Journalism	IL 367	Visual Arts
9	Applied Science	IL 368	Modern Day Sensor Physics
10	Green Technologies	IL 369	Energy Audit and Management
11	Maintenance Engineering	IL 370	Maintenance of Electronics Equipment
12	Life Skills	IL 371	Cooking and Nutrition
13	Environment	IL 372	Environmental Management
14	Safety	IL 373	Vehicle Safety
15	Quantum Computing and Technologies	IL 388	Quantum Computing and Quantum Technologies — Part 1

Course Code	Course Name	Credits
ET201	Engineering Mathematics III	03

Prerequisite:

Engineering Mathematics-I and Engineering Mathematics-2

Course Objectives:

- 1. To Learn the Laplace Transform, Inverse Laplace Transform of various functions, its applications.
- 2. To understand the concept of Fourier series, its complex form and enhance the problem-skills.
- 3. To Understand Matrix algebra for engineering problems
- 4. To understand the concept of complex variables, C-R equations with applications.
- 5. To understand the concepts of Quadratic forms and Singular value decomposition.
- 6. To Learn Fourier Integral, Fourier Transform and Inverse Fourier transform.

Course Outcomes:

The learner will be able to

- 1. Understand the concept of Laplace transform and its application to solve the real integrals, understand the concept of inverse Laplace transform of various functions and its applications in engineering problems.
- 2. Expand the periodic function by using the Fourier series for real-life problems and complex engineering problems.
- 3. Apply the concepts of eigenvalues and eigenvectors in engineering problems.
- 4. Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic functions.
- 5. Use the concept of Quadratic forms and Singular value decomposition which are very useful tools in various Engineering applications
- 6. Apply the concept of Fourier transform and its inverse in engineering problems.

Sr. No.	Module	Detailed Content	Hours	CO Mapping
	Laplace Transform	Definition of Laplace transform and Laplace transform of standard functions, Properties of Laplace Transform: Linearity, First Shifting Theorem, change of scale Property, multiplication by t, Division by t, (Properties without proof). Inverse of Laplace Transform by partial fraction and convolution theorem.	7	1
II	Fourier Series	Dirichlet's conditions, Fourier series of periodic functions with period 2π and $2L$, Fourier series for even and odd functions, Half range sine and cosine Fourier series, Orthogonal and Orthonormal functions, Complex form of Fourier series.	7	2

III	Linear Algebra Matrix Theory	Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, Functions of square matrix, Derogatory and Non Derogatory matrices.	7	3
IV	Complex Variables and Conformal mappings	Function f(z) of complex variable, Introduction to Analytic function: Necessary and sufficient conditions for f(z) to be analytic, Cauchy-Riemann equations in Cartesian coordinates, Milne-Thomson method: Determine analytic function f(z)when real part(u) and imaginary part (v), Conformal mapping, Linear and Bilinear mappings, cross ratios	7	4
V	Quadratic Forms	Quadratic forms over real field, Linear Transformation of Quadratic form, Reduction of Quadratic form to diagonal form using congruent transformation. Rank, Index and Signature of quadratic form, Sylvester's law of inertia, Value- class of a quadratic form-Definite Semi definite and Indefinite. Reduction of Quadratic form to a canonical form using congruent transformations. Singular Value Decomposition.	7	5
VI	Fourier Transform	Fourier Integral Representation, Fourier Transform and Inverse Fourier transform of constant and exponential function.	4	6
utorials				

Sr. No.	Level 1. Basic 2. Design 3. Advanced 4. Project/Case Study/Seminar	Detailed Lab/Tutorial Description	Hours
1	Basic	Laplace Transform	2
2	Advanced	Inverse Laplace Transform	2
3	Basic	Fourier Series -1	2

4	Advanced	Fourier Series -2	2
5	Advanced	Eigenvalues and eigenvectors;	2
6	Advanced	Cayley-Hamilton Theorem and its applications.	2
6	Basic	Complex Variables	2
7	Advanced	Conformal Mappings	2
8	Basic	Quadratic Forms-1	2
9	Advanced	Quadratic Forms-2	2
10	Basic	Fourier Transform	2

Theory Assessment:

Internal Assessment:40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Text Books and References:

- 1. Higher Engineering Mathematics B. V. Ramana, Tata Mc-Graw Hill Publication
- 2. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 3. Advanced engineering mathematics H.K. Das, S. Chand, Publications.
- 4. Advanced Engineering Mathematics Wylie and Barret, Tata Mc-Graw Hill.
- 5. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 6. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication
- 7. Scilab spoken tutorials videos.
 (https://spoken-tutorial.org/tutorial-search/?search_foss=Scilab&search_language= English)

Subject Code	Subject Name	Credits
ET202	Electronics Devices	04

Prerequisite:

Basic Electrical Engineering

Course Objectives:

- 1. To explain functionality of different electronic devices.
- 2. To understand characteristics, application, different Biasing Techniques of BIT.
- 3. To understand characteristics, application, different Biasing Techniques of MOSFET.
- 4. To explain amplifiers and analyze frequency response of small signal amplifiers
- 5. To compare small signal and large signal amplifiers.
- 6. To explain the working of differential amplifiers.

Course Outcomes: The learner will be able to

- 1. Analyze the functionality, V-I characteristics, application of different electronic devices.
- 2. Understand the importance of Biasing and evaluate different parameters of BJT and MOSFET using Biasing Techniques.
- 3. Understand the input and output characteristics of BJT and MOSFET
- 4. Evaluate the different parameters of a small signal amplifier using the Hybrid pi model.
- 5. Evaluate frequency response to understand behavior of single and multistage BJT and MOSFET Amplifier.
- 6. Understand working of different power amplifier circuits, their design and use in electronics and communication circuits.
- 7. Understand working of differential amplifiers and methods to improve CMRR.

Sr. No.	Module	Detailed Content	Hours	CO Mapping
I	Introduction of Electronic Devices	Study of pn junction diode characteristics and diode current equation. application of pn junction diode as rectifier. zener diode as a voltage regulator. construction and working of BJT, MOSFET, Uni junction transistor (UJT)	6	CO1
II	Bipolar Junction Transistor	Types of Configuration, Operating region, Characteristics of BJT, Need for biasing, Concept of DC load Line, Q point and Regions of operation of BJT and MOSFET, Biasing Techniques for BJT (Fixed bias and Voltage Divider Bias), application as switch and Amplifier, Power BJT.	7	CO2,CO3

III	MOSFET	MOSFET- Characteristics- Threshold voltage - Channel length modulation, D-MOSFET, E-MOSFET- Characteristics, Biasing Techniques for MOSFET (Drain to Gate bias and Voltage Divider Bias), Stability factor.and it application as switch and Amplifier, Power MOSFET.	7	CO2, CO3
IV	Small signal Amplifiers	Small signal hybrid pi equivalent circuit of a BJT, Small signal amplifier analysis using Hybrid pi model, single stage BJT CE Amplifier, MOSFET CS Amplifier, Multistage amplifiers, Analysis of Frequency Response, low and high Frequency Response of small signal amplifier, Miller's Theorem	7	CO4,CO5
V	Power Amplifier (Large signal Amplifier)	Compare small signal amplifiers and large signal amplifier, Introduction of Power Amplifiers, Classification of Power Amplifier, Class A power amplifier, Class B Power Amplifier, Class AB and Class C Power Amplifier, Types of Power Amplifier, Distortion in Amplifier, Temperature Effects, Heat Sink		CO6
VI	Differential Amplifiers	Basics of Differential Amplifier, Advantages, Differential Gain, CMRR, Common mode gain, features of Differential Amplifier, Different methods to improve CMRR in detail. Application of Differential Amplifier.	5	CO7

Lab Prerequisite:

Basic Electrical and Electronics Laboratory

Software Requirements:

LTSpice

Hardware Requirements:

Breadboard, Transistors, Resistors, Diodes, Connecting wires

Lab Objectives:

The objective of this course is

- 1. To provide the fundamental concepts of voltage and current characteristics of Diodes.
- 2. To familiarize with the important applications of zener diodes.
- 3. To design and study the CE and CS amplifiers characteristics.
- 4. To familiarize with biasing circuits and characteristics of EMOSFETs and DMOSFET
- 5. To simulate design and analysis of Multistage and differential amplifiers.

Lab Outcomes:

- 1. Able to analyze the characteristics of PN junction diodes.
- 2. Able to Analyze and understand the zener diode as a Voltage Regulator.
- 3. Able to analyze and implement the different biasing circuits of BJT, MOSFET.
- 4. Able to analyze and simulate the characteristics of BJT, MOSFET.
- 5. Able to design and implement the frequency response of a single stage BJT amplifier.

- 6. Able to simulate the frequency response of a CS amplifier.
- 7. Able to simulate and design the characteristics of multi stage and also differential amplifiers.

Sr. No.	Level 1. Basic	Detailed Lab/Tutorial Description	Hours
	2. Design 3. Advanced 4. Project/Case Study/Seminar		
1	Basic	Demonstrate VI Characteristics of PN junction diodes.	2
2	Basic	Zener as a voltage regulator.	2
3	Design	Design BJT fixed biasing and Voltage divider circuits.	2
4	Design	Design MOSFET Drain to Gate biasing and Voltage Divider Biasing using LTSpice	2
5	Design	Design and Implement frequency response of a single stage BJT CE amplifier.	2
6	Design	Design and Implement frequency response of a MOSFET CS amplifier.	2
7	Design	Demonstrate Drain and Transfer Characteristics of MOSFET using LTSpice	2
8	Advanced	Design and Implement frequency response of a multistage amplifier	2
9	Advanced	Implement Class A Power Amplifier using LTSpice	2
9	Advanced	Implement Class C Power Amplifier using LTSpice	2
10	Advanced	Implement Differential Amplifier using LTSpice	2

Theory Assessment:

Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Lab Assessments:

- 1. Term work Assessment: At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one miniproject can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.
- **2. Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

Text Books:

- 1. D. A. Neamen, "Electronic Circuit Analysis and Design," Tata McGraw Hill, 2ndEdition.
- 2. A. S. Sedra, K. C. Smith, and A. N. Chandorkar, "Microelectronic Circuits Theory and Applications," International Version, OXFORD International Students, 6thEdition
- 3. Franco, Sergio. Design with operational amplifiers and analog integrated circuits. Vol. 1988. New York: McGraw-Hill, 2002.

References:

- 1. Boylestad and Nashelesky, "Electronic Devices and Circuits Theory," Pearson Education, 11th Edition.
- 2. A. K. Maini, "Electronic Devices and Circuits," Wiley.
- 3. T. L. Floyd, "Electronic Devices," Prentice Hall, 9th Edition, 2012.
- 4. S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits", Tata Mc-Graw Hill, 3rd Edition
- 5. Bell, David A. Electronic devices and circuits. Prentice-Hall of India, 1999.

Subject Code	Subject Name	Credits
ET203	Network Theory	03

Prerequisite:

- 1. Basic Electrical Engineering
- 2. Engineering Mathematics

Course Objectives:

- 1. To evaluate the Circuits using network theorems.
- 2. To analyze the Circuits in time and frequency domain.
- 3. To study network Topology, network Functions and two port networks.
- 4. To synthesize passive network by various methods.

Course Outcomes: The learner will be able to

- 1. Apply their knowledge in analyzing Circuits by using network theorems.
- 2. Apply the knowledge of graph theory for analyzing the circuits.
- 3. Find transient and steady state response of a circuit using time and frequency domain analysis methods.
- 4. Find the network functions
- 5. Understand the concept of Two port networks and distinguish between various two port network parameters.
- 6. Synthesize the network using passive elements.

Sr. No.	Module	Detailed Content	Hours	CO Mapping
I	Electrical circuit analysis	Circuit Analysis: Analysis of Circuits with and without dependent sources using generalized loop and node analysis, super mesh and super node analysis technique. Circuit Theorems: Superposition, Thevenin's, Norton's and Maximum Power Transfer Theorems (Use only DC source).	08	CO1
E	Graph Theory	Objectives of graph theory, Linear Oriented Graphs, graph terminologies Matrix representation of a graph: Incidence matrix, Circuit matrix, Cut-set matrix, reduced Incident matrix, Tieset matrix, f-cutset matrix. Relationship between sub matrices A, B & Q. KVL & KCL using matrix.	05	CO2

III	Time and frequency domain analysis	Time domain analysis of R-L and R-C Circuits: Forced and natural response, initial and final values. Solution using first order and second order differential equation with step signals. Frequency domain analysis of R-L-C Circuits: Forced and natural response, effect of damping factor. Solution using second order equation for step signal.	07	CO3
IV	Network functions	Network functions for the one port and two port networks, driving point and transfer functions, Poles and Zeros of Network functions, necessary condition for driving point functions, necessary condition for transfer functions, testing for Hurwitz polynomial. Analysis of ladder network (Up to two nodes or loops)	06	CO4
V	Two port Networks	Parameters: Open Circuits, short Circuit, Transmission and Hybrid parameters, relationship among parameters, conditions for reciprocity and symmetry. Interconnections of Two-Port networks T & π representation.	06	CO5
VI	Synthesis of RLC circuits	Positive Real Functions: Concept of positive real function, necessary and sufficient conditions for Positive real Functions. Synthesis of LC, RC Circuits: properties of LC, RC driving point functions, LC, RC network Synthesis in Cauer-I &Cauer-II, Foster-I & Foster-II forms (Up to Two Loops only).	07	CO6

Theory Assessment:

Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average of score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Text Books:

- 1. Franklin F Kuo, "Network Analysis and Synthesis", Wiley Toppan, 2nd ed., 1966.
- 2. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi, 26th Indian Reprint, 2000.

References:

- 1. A. Chakrabarti, "Circuit Theory", Dhanpat Rai & Co., Delhi, 6th Edition.
- 2. A. Sudhakar, Shyammohan S. Palli "Circuits and Networks", Tata McGraw-Hill education
- 3. Smarajit Ghosh "Network Theory Analysis & Synthesis", PHI learning.
- 4. K.S. Suresh Kumar, "Electric Circuit Analysis" Pearson, 2013.
- 5. D. Roy Choudhury, "Networks and Systems", New Age International, 1998.

Subject Code	Subject Name	Credits
ET204	Digital System Design	04

Prerequisite: None

Course Objectives:

- 1. To understand number representation and conversion between different representations in digital electronic circuits.
- 2. To analyze logic processes and implement logical operations using combinational logic circuits.
- 3. To understand concepts of sequential circuits.
- 4. To analyze sequential systems in terms of state machines.
- 5. To understand concept of Programmable Devices, PLA, PAL, CPLD and FPGA
- 6. To understand the use of VHDL for simulation of combinational and sequential circuits.

Course Outcomes: The learner will be able to

- 1. Develop a digital logic and apply it to solve real life problems.
- 2. Analyze, design and implement combinational logic circuits.
- 3. Analyze, design sequential logic circuits
- 4. Implement sequential logic circuits.
- 5. Analyze digital system design using PLD.
- 6. Simulate and implement combinational and sequential circuits using VHDL systems.

Sr. No.	Module	Detailed Content	Hours	CO Mapping		
I	Principles of combinational logic	Review of Number System, Binary Code, Binary Coded Decimal, Octal Code, Hexadecimal Code Gray Code and their conversions, Binary Arithmetics, Digital logic gates, Realization using NAND, NOR gates, Boolean Algebra, De Morgan's Theorem, SOP and POS representation, K Map up to	05	CO1		
AT.	Analysis and design of combinational logic	four variables. Half adder, Full adder, Half Subtractor, Full Subtractor, Ripple Carry adder, Carry Look ahead adder and BCD adder. Binary Multiplier, Magnitude Comparator, Multiplexer and Demultiplexer: Multiplexer operations, cascading of Multiplexer, Boolean Function implementation using multiplexer and basic gates, demultiplexer, encoder and decoder	07	CO2		

III	Sequential Logic Circuits	Flip flops: RS, JK, Master slave flip flops; T & D flip flops with various triggering methods, Conversion of flip flops, Registers: SISO, SIPO, PISO, PIPO, Universal shift registers. Counters: Asynchronous and Synchronous, Up/Down, MOD N, BCD	07	CO3
IV	Applications of Sequential Circuits	*	08	CO4
V	Programmable Logic Devices	Introduction: Programmable Logic Devices (PLD), Programmable Logic Array (PLA), Programmable Array Logic(PAL), CPLD and FPGA	05	CO5
VI	Introduction to VHDL Design	Introduction to VHDL Design of Combinational circuits using VHDL Introduction to Hardware Description Language, Core features of VHDL, data types, concurrent and sequential statements, data flow, behavioral, structural architectures, subprograms, Examples like Adder, subtractor, Multiplexers, De-multiplexers, decoder.	07	CO6

Theory Assessment:

Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average of score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Text Books:

- 1, John F. Warkerly, "Digital Design Principles and Practices", Pearson Education, Fourth Edition (2008).
- 2. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Education, Third Edition (2003).
- 3. J. Bhaskar, "VHDL Primer", PHI, Third Edition (2009).
- 4. Volnei A. Pedroni, "Digital Electronics and Design with VHDL" Morgan Kaufmann Publisher (2008)

References:

- 1. Morris Mano / Michael D. Ciletti, "Digital Design", Pearson Education, Fourth Edition (2008).
- 2. Thomas L. Floyd, "Digital Fundamentals", Pearson Prentice Hall, Eleventh Global Edition (2015).
- 3. Mandal, "Digital Electronics Principles and Applications", McGraw Hill Education, First

Edition (2010).

- 4. Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL", Second Edition, TMH (2009).
- 5. Ronald J. Tocci, Neal S. Widmer, "Digital Systems Principles and Applications", Eighth Edition, PHI (2003)
- 6. Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications", The McGraw Hill, Seventh Edition (2011).

Lab Prerequisite:

Basic Electrical and Electronics Laboratory

Software Requirements:

VHDL

Hardware Requirements:

Breadboard, Different digital IC, Resistors, Diodes, Connecting wires

Lab Objectives:

The objective of this course is

- 1. To provide the fundamental concepts associated with digital logic and circuit design.
- 2. To introduce the basic concepts and laws involved in the designing and implementation of combinational logic circuits
- 3. To familiarize with the combinational circuits such as Multiplexers and Demultiplexers
- 4. To familiarize Sequential circuits utilized in the different digital circuits and systems.
- 5. To simulate design and analysis of the digital circuit and system using VHDL.

Lab Outcomes:

- 1. Able to develop a digital logic and apply it to solve real life problems.
- 2. Able to Analyze, design and implement combinational logic circuits such as adders and Subtractors.
- 3. Able to analyze combinational circuits such as Mux & Demux Able to analyze and convert Flip-Flops
- 4. Able to implement sequential circuits such as counters and shift registers.
- 5. Able to Simulate and implement combinational and sequential circuits using VHDL systems.

	Sr. No.	Level 1. Basic 2. Design 3. Advanced 4. Project/Case Study/Seminar	Detailed Lab/Tutorial Description	Hours
K	1	Basic	To implement basic gates using universal gates.	2
	2	Design	To design Half adder & Full adder	2
	3	Basic	To verify the operation of Multiplexer	2
	4	Basic	To verify the operation of Demultiplexer	2
	5	Design	Verification of Truth table and conversion of FlipFlop	2
	6	Design	Universal shift register	2
	7	Design	Design an asynchronous counter	2
	8	Design	Design a synchronous counter	2

9	Advanced	Modeling different types of gates: (a) 2-input NAND (b)	2
		2-input OR gate (c) 2-input NOR gate (d) NOT gate (e) 2-input XOR gate (f) 2-input XNOR gate	
10	Advanced	Modeling (a) Half-adder (b) Full-adder	2

Subject Code	Subject Name	Credits
ET205	Personal Finance Management	02

Course objectives: The course is aimed

- 1. To introduce the basic concepts of finance and their practical application.
- 2. To demonstrate the process of drafting a financial budget.
- 3. To explain investment avenues and planning of personal finance.
- 4. To develop portfolio strategies for individual and institutional investor
- 5. To discuss various components of insurance and tax management.
- 6. To introduce financial frauds, measures to avoid frauds and resources of frauds.

Course outcomes: On successful completion of course learner/student will be able:

- 1. To know the basic concepts of finance and interpret current business positions by reading books of accounts.
- 2. To analyze investment avenues and plan personal finance to develop portfolio strategies for individuals.
- 3. To develop skills to interpret current market position.
- 4. To create analytical approach for financial decisions.
- 5. To learn and understand Tax and Insurance management.
- 6. To identify financial frauds and understand the level of financial aspects.

Module	Module	Detailed Contents	Hrs.
No			
1	Introduction to	Financial Planning Process: Goal, Vision and mission,	3
1	Personal	Components of Personal Financial Plan, Advantages	
	Financial A	and developing personal financial plan	
	Planning		
2	Financial	Meaning and Process of Drafting Financial Budget,	3
	Budget	Components of Financial Budget, Drafting Financial	
		Budget	
3	Investment Management	Meaning of Investment, Concept of Risk and Return and Time Value of Money, Investment Avenues, Portfolio Creation and Management	
	Insurance and	Components of Insurance: Life Insurance, Health	3
4	Spending	Insurance, Property Insurance, Spending Management	
	Management	, 1 , , 1 , 5	
	Tax	Introduction to Tax Regime and Tax Returns,	3
5	Management	Introduction to Income Tax and its impact on Incomes	
<u> </u>		,Tax on property: Revenue and Capital Incomes, Tax	
		Management, Tax Saving, Tax Avoidance	

6	Financial Frauds	Meaning and Types of Fraud, Investment Frauds, Online	6
		Payment Frauds, Identity Theft, Mass Marketing Fraud	
		,Measures to avoid frauds, Recourse from frauds, Cases	
		of Frauds	

Theory Assessment:

Internal Assessment: 20 marks

Consisting of Two compulsory internal assessments 20 Marks each. The final marks will be the average score of both the assessments.

End Semester Examination: 40 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Books and References:

- 1. Financial Management: I M Pandey, Vikas Publishing House.
- 2. Financial Management: M.Y. Khan, P.K. Jain, Tata McGraw Hill
- 3. Financial Management: Prassana Chandra, Prentice Hall.
- 4. Investment Analysis & Portfolio Management- Prasanna Chandra, Tata McGrawHill
- 5. Wealth Management- Dun & Bradstreet, Tata McGrawHill
- 6. Wealth Management- S.K. Bagachi, Jaico publishing house

Subject Code	Subject Name	Credits
ET206	Human Values and Social Ethics	02

Course Objectives: The objective of the course is four fold:

- 1. Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- 2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

Course Outcomes: By the end of the course, students are expected

- 1. To become more aware of themselves, and their surroundings (family, society, nature);
- 2. To recognize the relationship between ethics and values pertinent for engineering professionals.
- 3. They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- 4. They would have better relevance of values, ethics in social work and importance of human relationship.
- 5. They would have a better understanding of ethics in technical writing.
- 6. They would have knowledge of fair practices in technology development.

SN	Details	Hours
1	Ethics and Values	06
	Meaning & Concept of Ethics Difference between Ethics and Values. Ethical code	
	of conduct for students in family, society, pear groups, social media. Development	
	of a holistic perspective based on self-exploration.	
2	Professional Ethics :	05
	Professional Ethics vs Personal ethics Components of professional ethics	
	Professional values and its importance	
3	Ethics and Society:	05
	Relevance of values and ethics in social work Ethical dilemmas	
	Values and ethical principles of social work	
	· Service	
	· Dignity and worth of a person	
	· Importance of Human relationships	

	· Integrity	
	· Competence	
	· Social Justice	
4	Ethics in Technical writing :	05
	Documenting sources, Presentation of Information, Ethics & Plagiarism	
5	Ethics and Technology Development :	05
	Risk management and Individual rights,	
	Moral issues in development and application of technology	
	Privacy/confidentiality of information Managing Technology to ensure fair practices	

Assessment:

Term Work: 50 Marks (Continuous Evaluation)

Students will have to submit five assignments (one on each module). They will have to prepare PPTs in a group of 3 / 4 students on one case study in each module and give a presentation in a classroom.

Reference Books:

- 1. Martin Cohen, 101 Ethical Dilemmas Routledge, 2nd edition, 2007.
- 2. M. Govindarajan, S. Natarajan & V.S. Senthilkumar, *Professional Ethics and Human Values*, Prentice Hall India Learning Private Limited, 2013.
- 3. Mike W. Martin, Ethics in Engineering, McGraw Hill Education; Fourth edition, 2017.
- 4. Science & Humanism Towards a Unified Worldview..... (P L Dhar & R R Gaur)
- 5. A foundation course on Human Values & Professional Ethics... (R R Gaur, R Sangal & G P Bagaria)

Subject Code	Subject Name	Credits
ET291	Mini Project I	02

Lab Prerequisite:

Basic Electrical and Electronics Engineering (BEEE/BEE), C programming

Lab Objectives:

- L1. To make students familiar with the basics of electronic devices and circuits, electrical circuits and digital systems
- L2. To familiarize the students with the designing and making of GPP
- L3. To make students familiar with the basics Microcontroller, Arduino board and Arduino IDE (Integrated Development Environment)
- L4. To familiarize the students with the programming and interfacing of different devices with Arduino
- L5. To acquaint with the process of identifying the needs and converting it into the problem.
- L6. To familiarize the process of solving the problem in a group

Lab Outcomes:

The learner will be able to

- LO1. Identify basic electronic components and to design basic electronic circuits.
- LO2. Learn the technique of soldering and circuit implementation on general purpose printed circuit board (GPP).
- LO3. Utilize the basic electronic tools and equipments (like DMM, CRO, DSO etc.) and also perform analysis of hardware fault (Fault detection and correction)
- LO4. Write basic codes for the Arduino board using the IDE for utilizing the onboard resources.
- LO5. Apply the knowledge of interfacing different devices to the Arduino board to accomplish a given task.
- LO6. Identify problems based on societal /research needs, design Arduino based projects for a given problem and demonstrate capabilities of self-learning in a group, which leads to lifelong learning.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do surveys and identify needs, which shall be converted into problem statements for mini projects in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students shall submit an implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini projects.
- A log book to be prepared by each group, wherein the group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand the problem effectively, propose multiple solutions and select the best possible solution in consultation with the guide/ supervisor. Students shall convert the best solution into a working model using various components of their domain areas and demonstrate. The solution to be validated with proper justification and report to be compiled in standard format.
- With the focus on self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is

preferable that a single project of appropriate level and quality be carried out in two semesters by all the groups of the students. i.e. Mini Project in semester III and IV.

Software Requirements:

Eagle:https://www.autodesk.in/products/eagle/overview Arduino IDE: https://www.arduino.cc/en/main/software

Hardware Requirements: Arduino Board and various interfacing devices as mentioned in syllabus

Sr. No.	 Level Basic Design Advanced Project/Case Study/Seminar 	Detailed Lab/Tutorial Description	LO Mapping
1	1,2	Identification and Designing of Circuit 1.1 Identification of a particular application with understanding of its detailed operation. Study of necessary components and devices required to implement the application. 1.2 Designing the circuit for particular application (either analog, digital, electrical, analog and digital, etc.)	LO1
2	2,3	Software simulation and Implementation on GPP 2.1 Simulation of circuit for particular application using software's to verify the expected results 2.2 Implementation of verified circuit on general purpose printed circuit board (GPP). Now Verify the hardware results by using electronic	LO2,LO3
		tools and equipment like millimeter, CRO, DSO	
3	2,3	Detection of Hardware faults, Result verification and understanding Troubleshooting 3.1 Identify the hardware faults in designed circuit and subsequently rectify it 3.2 Now again verify the hardware results by using electronic tools and equipments like millimeter, CRO, DSO etc. 3.3 Understand the trouble shooting by removing some wired connections. 3.4 Understand the trouble shooting of track. Troubleshoot the faculty components or devices	LO3

	4	1,2	Introduction to Arduino Uno board and	LO4
			integrated development environment (IDE)	
			4.1 Write the code for blinking the on board led	
			with a specified delay Apparatus Requirement:	
			Hardware: Arduino Board LED, Software:	
			Arduino IDE Software	
			GPIO (along with Analog pin)	
			Programming	
			5.1 Introduction to programming GPIO, Analog	
			and PWM PINS.	
			1 Interface any Digital Sensors to the	
			Arduino board and display sensor values on the	
			serial Monitor. 2 Interface any Analog sensor to the Arduino	
			2 Interface any Analog sensor to the Arduino board and display sensor values on the serial	
			Monitor.	
	-	2.2	3. Generate varying duty cycle PWM using	104105
	5	2,3	Arduino.	LO4, LO5
			5.2 Controlling output devices/Displaying	
			Introduction to different sensor (Analog and	
			Digital), Relays, Motors and display. Interface an Analog Sensor to the Arduino	
			1 Interface an Analog Sensor to the Arduino board and display sensor values on	
			LCD/TFT/Seven segment Display.	
			2 Interface a temperature sensor to an	
			Arduino and switch on a relay to operate a fan if	
			temperature exceeds a given threshold. Also	
			display the temperature on any of the display	
			device	
			Interfacing Communication Devices and Cloud Networking	
		•	6.1 Introduction to Bluetooth, Zigbee, RFID and	
			WIFI, specifications and interfacing methods.	
			1 Interface Wi-Fi /Bluetooth/GSM/Zigbee/RF	
		2,3	module to Arduino and program it to transfer sensor	LO4,
	6		data wirelessly between two devices. Any two	LO5,LO6
		Y	techniques from the above-mentioned modules	
	11	Y	needs to be interfaced. 6.2 Identify problems based on societal /research	
			needs and design Arduino based projects for a given	
			problem.	
^			Sample Projects	
			1. Waste Management System	
			2. Smart City Solutions	
			3. Energy Monitoring Systems	
			4. Smart Classrooms and learning Solutions	
		D	5. Home security systems 6. Smart Agriculture solutions	LO1,LO2,
		Project	6. Smart Agriculture solutions7. Healthcare solutions.	LO3,LO4,
				LO5, LO6

8. Industrial Applications9. IoT Applications10. Robotics	

Lab Assessments:

Teamwork, Practical and Oral: The review/ progress monitoring committee shall be constituted by the heads of departments of each institute. The progress of the mini project to be evaluated on a continuous basis, minimum two reviews in each semester. In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

Distribution of Term work marks for both semesters shall be as below

- Marks awarded by guide/supervisor based on log book: 10
- Marks awarded by review committee: 10
- Quality of Project report: 05

Two reviews will be conducted for continuous assessment, First shall be for finalization of problem and proposed solution Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication

Guidelines for Assessment of Mini Project Practical/Oral Examination:

Report should be prepared as per the guidelines issued by the Guide. Mini Project shall be assessed through a presentation and demonstration of the working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations having experience of more than five years approved by the head of Institution. Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions

- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

Textbook:

Arduino for Dummies, by John Nussey (2013)

References:

- 1. R S Khandpur, "Printed circuit board", McGraw-Hill Education; 1st edition, 24 February , 2005. Arduino Projects for Dummies, by Brock Craft (2013)
- 2. Programming Arduino Getting Started with Sketches, Simon Monk (2016)
- 3. Programming Arduino -Next Steps, by Simon Monk (2016)

Online Repository:

- 1. GitHub
- 2. NPTEL Videos on Arduino Programming
- 3. Spoken Tutorial Project-IIT Bombay: https://spoken-tutorial.org/tutorialsearch/? search_foss=Arduino&search_language=English
- 4. Teachers are recommended to use a free online simulation platform "Tinkercad" for the simulation of Arduino based circuits before the students implement it in the hardware: https://www.tinkercad.com/

Course Code	Course Name	Credits
ET207	Engineering Mathematics IV	03

Prerequisite:

Engineering Mathematics-I, Engineering Mathematics-II and Engineering Mathematics -III

Course Objectives:

- 1. To understand the basic techniques of statistics like correlation, regression, and curve fitting for data analysis, Machine learning, and AI.
- 2. To Acquaint with the concepts of probability, random variables with their distributions and expectations.
- 3. To Understand the concepts of vector spaces used in the field of machine learning and engineering problems
- 4. To understand the concepts of Calculus of Variations.
- 5. To understand the concepts of complex integration
- 6. To Use concepts of vector calculus to analyze and model engineering problems.

Course Outcomes: The learner will be able to

- 1. Apply the concept of Correlation and Regression to the engineering problems in data science, machine learning, and AI.
- 2. Illustrate understanding of the concepts of probability and expectation for getting the spread of the data and distribution of probabilities.
- 3. Apply the concept of vector spaces and orthogonalization process in Engineering Problems.
- 4. Find the extremals of the functional using the concept of Calculus of variation.
- 5. Use the concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals
- 6. Apply the concepts of vector calculus in real life problems.

Sr. No.	Module	Detailed Content	Hrs.	CO Mapping
I	Correlation, Regression and Curve Fitting,	Karl Pearson's Coefficient of correlation (r), Spearman's Rank correlation coefficient (R), Lines of regression, Fitting of first and second degree curves.	6	1
	Probability, Probability Distributions,	Conditional probability, Total Probability and Baye's Theorem, Discrete and Continuous random variables, Probability mass and density function, Probability distribution for random variables, Expectation, Variance, Binomial distribution, Poisson distribution, Normal distribution	7	2
III	Linear Algebra: Vector Spaces	Vectors in n-dimensional vector space, norm, dot product, The Cauchy Schwarz inequality, Unit vector; Linear combinations, linear Dependence and Independence, QR decomposition; Orthogonal projection, Orthonormal basis, Gram-Schmidt process for vectors; Vector spaces over real field, subspaces.	7	3

IV	Calculus of Variations	Euler- Lagrange equation (Without Proof), When F does not contain y, When F does not contain x, When F contains x, y, y'.Isoperimetric problems- Lagrange Method. Functions involving higher order derivatives: Rayleigh-Ritz Method.	6	4
V	Complex Integration	Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). Taylor's and Laurent's series (without proof). Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof)	7	5
VI	Vector Integration	Vector integral: Line Integral, Green's theorem in a plane (Without Proof), Stokes' theorem (Without Proof) only evaluation, Gauss' divergence	6	6

List of tutorials

Sr. No.	Level 1. Basic 2. Design 3. Advanced 4. Project/Case Study/Seminar	Detailed Lab/Tutorial Description	Hours
1	Basic	Correlation and Regression	2
2	Advanced	Regression and Curve fitting	2
3	Basic	Probability	2
4	Advanced	Probability Distribution	2
5	Advanced	Calculus of variation	2
6	Basic	Linear algebra: Vector space -11	2
6	Advanced	Linear algebra : Vector space -2	2
7	Basic	Complex Integration -2	2
8	Advanced	Complex Integration -2	2
9	Basic	Vector Integration-1	2

10	Advanced	Vector Integration-2	2
----	----------	----------------------	---

Theory Assessment:

Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

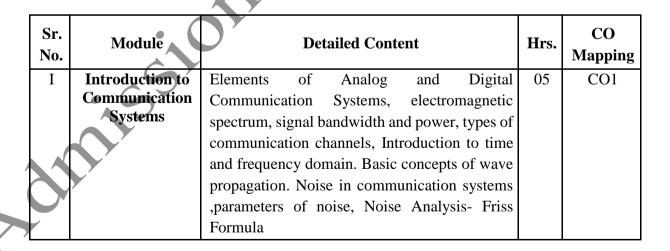
Text Books and References:

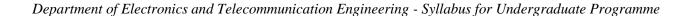
- 1. Higher Engineering Mathematics B. V. Ramana, Tata Mc-Graw Hill Publication
- 2. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 3. Advanced engineering mathematics H.K. Das, S. Chand, Publications.
- 4. Advanced Engineering Mathematics Wylie and Barret, Tata Mc-Graw Hill.
- 5. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 6. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education.
- 7. Beginning Linear Algebra Seymour LipschutzSchaum's outline series, Mc-Graw Hill Publication.

Course Code	Course Name	Credits
ET208	Electronic Communication Systems	04

Electronic Devices and Circuits

Course Objectives:


The course is introduced to enable students understand the concepts


- 1. Illustrate the Elements in Analog Communication Systems
- 2. Understand the concepts of Amplitude Modulation Demodulation
- 3. Learn Frequency Modulation Demodulation
- 4. Evaluate the performance of Radio Receivers
- 5. Identify pulse analog modulation techniques
- 6. Introduce digital communication systems and multiplexing techniques

Course Outcomes:

The learner will be able to

- 1. Understand the basic components and types of noises in communication system
- 2. Describe amplitude modulation; compare the types and uses of AM system
- 3. Explain the Frequency modulator demodulator circuits and analyse noise in FM system
- 4. Distinguish AM and FM receivers and their performance
- 5. Sketch the output waveforms for pulse modulation techniques.
- 6. Demonstrate the principles of multiplexing and demultiplexing techniques.

II	Amplitude	Basic concepts, need for modulation,	10	CO2
	Modulation and	waveforms (time domain and frequency		
	Demodulation	domain), modulation index, bandwidth,		
		voltage distribution and power calculations.		
		DSBFC: Principles, low-level and high-level		
		transmitters, DSB suppressed carrier, Balanced		
		modulators with diode (Ring modulator and		
		·		
		FET) and SSB systems.		1
		Amplitude demodulation: Diode detector,		
		practical diode detector, Comparison of		
		different AM techniques, Applications of AM		
		and use of VSB in broadcast television.		
III	Frequency	Frequency and Phase modulation (FM and PM):		CO3
	Modulation and	Basic concepts, mathematical analysis, FM	8	
	Demodulation	wave (time and frequency domain), sensitivity,		
		phase and frequency deviation, modulation		
		index, deviation ratio, bandwidth requirement	/	
		of angle modulated waves, narrow band FM and		
		wideband FM. Varactor diode modulator, FET		
		reactance modulator, Direct FM transmitter,		
		indirect FM Transmitter, noise triangle, pre-		
		emphasis and de-emphasis		
		FM demodulation: Balanced slope detector,		
		Foster-Seely discriminator, Ratio detector, FM		
		demodulator using Phase lock loop, Compare		
		FM and PM.		
IV	AM and FM	Characteristics of radio receivers, AM Radio	4	CO4
	Receivers	Receiver: Super - heterodyne receiver block		
	210001,018	diagram, tracking and choice of IF, AGC and		
		its types and Double Conversion Radio		
		Receiver, (remove) FM receiver block		
		diagram,		
V	Pulse	Sampling theorem for low pass signal, proof	6	CO5
·	Modulation	with spectrum, Nyquist criteria, Sampling	U	CO3
	Techniques	techniques, aliasing error and aperture effect.		
	Techniques	Analog Pulse Techniques : PAM, PWM, PPM		
		generation, detection and applications.		
	A	Digital Techniques: Basics of PCM system,		
	Y	Delta modulation (DM) and Adaptive Delta		
		Modulation (ADM). Comparison of Digital		
	7	techniques		
VI	Multiplexing	Frequency Division Multiplexing transmitter &	5	CO6
	and	receiver block diagram and applications.		
	Demultiplexing	Time Division Multiplexing transmitter &		
	Techniques	receiver block diagram and applications. T1		
	1 comiques	System, PAM TDM system		
		•		

Electronics and Communication Laboratory:

Lab Prerequisite:

Electronic Devices and Circuits **Software Requirements:** Matlab

Hardware Requirements: Kits for AM, DSB-SC, DSB-FC, SSB, FM, PAM, PWM, PPM,

Superheterodyne receiver, TDM, FDM

Sr. No.	Level 1. Basic 2. Design 3. Advanced 4. Project/Case Study/Seminar	Detailed Lab/Tutorial Description	Hrs.
1	1, 2	Generation and detection of AM (DSB-FC, DSB-SC,SSB) signals.	2
2	1, 2	Generation and detection of FM signals.	2
3	3	Study of AM broadcast receiver (Super heterodyne).	2
4	1	Generation of PAM signal and verify the sampling theorem.	2
5	1	Generation of PPM, PWM signal.	2
6	3	Study of TDM and FDM multiplexing techniques.	2
7	2, 3	Implement Pre-emphasis and De-emphasis using Spice /Matlab Simulation	2
8	2, 3	Generate AM & FM using Matlab Simulation	2
9	4	Sight visit to radio station to get knowledge of practical transmitter stages	6

Theory Assessment:

Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Lab Assessments:

Term work Assessment: At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time.

Oral/Viva Assessment: The practical and oral examination will be based on the entire syllabus.

Text Books:

- 1. Kennedy and Davis, "Electronics Communication System", Tata McGraw Hill, Fourth edition.
- 2. B.P. Lathi, Zhi Ding "Modern Digital and Analog Communication system", Oxford
- 3. University Press, Fourth edition.

4. Wayne Tomasi, "Electronics Communication Systems", Pearson education, Fifth edition.

References:

- 1. Taub, Schilling and Saha, "Taub's Principles of Communication systems", Tata McGraw Hill, Third edition.
- 2. P. Sing and S.D. Sapre, "Communication Systems: Analog and Digital", Tata McGraw Hill, Third edition.
- 3. Simon Haykin, Michel Moher, "Introduction to Analog and Digital Communication", Wiley, Second edition.
- 4. Dennis Roddy and John Coolen, Electronic Communication, Pearson, 4/e, 2011

Subject Code	Subject Name	Credits
ET209	Signals and Systems	03

Engineering Mathematics III

Course Objectives:

- 1. To identify, classify and analyze various types of signals and systems
- 2. To analyze time Domain analysis of continuous and discrete time signals and systems.
- 3. To Analyze the continuous and discrete time signals and systems in frequency domain using Fourier Transform.
- 4. To analyze, formulate and solve problems on frequency domain analysis of continuous time systems using Laplace Transform.
- 5. To analyze, formulate and solve problems on frequency domain analysis of discrete time systems using Z- Transform.
- 6. To provide foundation of signal and system concepts to areas like communication, control and comprehend applications of signal processing in communication systems.

Course Outcomes:

- 1. Classify and analyze various types of signals and systems.
- 2. Determine convolution integral and convolution sum.
- 3. Analyze the continuous and discrete time signals and systems in frequency domain using Fourier Transform.
- 4. Analyze, formulate and solve problems on frequency domain analysis of continuous time systems using Laplace Transform.
- 5. Analyze, formulate and solve problems on frequency domain analysis of discrete time systems using Z- Transform.
- 6. Understand the concept of FIR and IIR system

Sr. No.	Module	Detailed Content	Hours	CO Mapping
1	Introduction of Continuous and Discrete Time Signals and systems	Introduction to Signals: Definition of Signals, Representation of continuous time signals and discrete time signals, Sampling theorem(only statement derivation not expected), sampling of continuous time signals Basic Elementary signals, Arithmetic operations on the signals- Time Shifting, Time scaling, Time Reversal of signals Classification of Continuous time signals and Discrete time signal Introduction to Systems: Definition of Systems, Classification of Continuous time systems and Discrete time systems	08	CO 1

2	Time domain analysis of continuous time and discrete time systems	Linear Time Invariant (LTI) systems, Convolution integral and Convolution sum for analysis of LTI systems Correlation of Signals: Auto-correlation and Cross correlation of Discrete time signal	07	CO 2
3	Fourier Analysis of Continuous and Discrete Time Signals and Systems	Fourier transform of periodic and non-periodic functions, Properties of Fourier Transform(Property Derivations are not expected), Inverse Fourier Transform, Frequency Response: computation of Magnitude and Phase Response, ,Limitations of Fourier Transform	05	CO 3
4	Frequency domain analysis of continuous time system using Laplace transform	Definition of Laplace Transform (LT),Region of Convergence (ROC), Properties of Laplace transform(Property Derivations are not expected), Inverse Laplace transform. Analysis of continuous time LTI systems using Laplace Transform: Causality and stability of systems in s-domain, Total Response of the system, Relation between LT and FT	06	CO 4
5	Frequency domain analysis of discrete time system using Z- transform	Definition of unilateral and bilateral Z Transform, Region of Convergence (ROC), Properties of Z-Transform, Inverse Z-Transform (Partial fraction method only) Analysis and characterization of the LTI system using Z transform: Transfer Function and difference equation, plotting Poles and Zeros of a transfer function, causality, stability, Total response of a system. Relation between Laplace Transform and Z-Transform, Relation between Fourier Transform and Z-Transform	09	CO 5
6	FIR and IIR systems	Concept of finite impulse response systems and infinite impulse response systems, Linear Phase FIR systems. Realization structures of LTI Discrete time system: Direct form –I and direct form II, Linear Phase FIR structures.	04	CO6

Theory Assessment:

Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average of score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Text Books:

- 1. NagoorKani, "Signals and Systems", Tata McGraw Hill, Third Edition, 2011
- 2. Tarun Kumar Rawat, "Signals and Systems", Oxford UniversityPress 2016.
- 3. Simon Haykin and Barry Van Veen, "Signals and Systems", John Wiley and Sons, Second Edition, 2004.

References:

- 1. Hwei. P Hsu, "Signals and Systems", Tata McGraw Hill, Third edition, 2010
- 2. Rodger E Ziemer, William H. Tranter and D. Ronald Fannin, "Signals and Systems". Pearson Education, Fourth Edition 2009.
- 3. Alan V. Oppenhiem, Alan S. Willsky and S. Hamid Nawab, "Signals and Systems", Prentice-Hall of India, Second Edition, 2002.

Annies ion

Course Code	Course Name	Credits
ET210	Linear Integrated Circuits	3

- 1. Basic Electrical & Electronics Engineering
- 2. Electronic Devices and Circuits

Course Objectives:

- 1. To understand basic concepts of operational amplifiers.
- 2. To understand various linear applications of operational amplifier.
- 3. To understand various non-linear applications of operational amplifier.
- 4. To understand specifications of A/D and D/A converter and their types.
- 5. To understand the fundamentals of IC555,PLL IC 565 and VCO IC 566 and its applications
- 6. To understand various voltage regulator integrated circuits.

Course Outcomes:

Having successfully completed this course, the student will be able to

- 1. Understand the basic building blocks and fundamentals of operational amplifiers.
- 2. Develop skills to design linear applications of op-amp.
- 3. Develop skills to design nonlinear applications of op-amp.
- 4. Analyze various ADC and DAC techniques.
- 5. Compare the working of multivibrators using timer IC 555, Gain knowledge about PLL IC 565 and VCO IC 566 and its applications.
- 6. Illustrate the functions of various voltage regulator integrated circuits.

Sr. No.	Module	Detailed Content	Hrs.	CO Mapping
I	Basics of Operational Amplifier	Block diagram of Op-Amp, Ideal and practical characteristics of op-amp, Configurations of Op-Amp: Operational amplifier open loop and closed loop configurations.	4	CO1
11	Linear Applications of OP-AMP	Inverting and non-inverting amplifier, voltage follower, summing and difference amplifier, current amplifier, voltage to current converter and current to voltage converter, Integrator & differentiator (ideal & practical), Instrumentation amplifier and applications, Active Filters: First and Second order active low pass, high pass, band pass. Positive feedback, Barkhausen's criteria, Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator.	9	CO2

III	Non-linear Applications of OP-AMP	Comparators: Inverting comparator and non-inverting comparator, zero crossing detectors, window detector, Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger, Waveform Generators: square wave generator and triangular wave generator, Basics of Precision Rectifiers: Half wave and full wave precision rectifiers, peak detector, sample and hold circuit	7	CO3
IV	Analog to Digital and Digital to Analog Convertors	Specifications of D/A converter, DAC techniques: weighted resistor DAC and R-2R ladder DAC, Specifications of A/D converter, ADC techniques: flash ADC, dual slope ADC, successive approximation ADC.	5	CO4
V	Special Purpose Integrated Circuits	Functional block diagram and working of IC 555, Design of Astable and Monostable multivibrator using IC 555, Applications of Astable and Monostable multivibrator as Pulse width modulator and Pulse Position Modulator, Functional block diagram and working of VCO IC 566 and application as frequency modulator, Functional block diagram and working of PLL IC 565 and application as FSK Demodulator.	8 *	CO5
VI	Voltage Regulators	Functional block diagram, working and design of three terminal fixed (78XX, 79XX series) and three terminal adjustable (LM317, LM337) voltage regulators, Functional block diagram, working and design of general purpose IC 723 (HVLC and HVHC). Introduction and block diagram of switching regulator.	6	CO6

Lab Prerequisite:

Basic Electrical & Electronics Engineering Electronic Devices

Software Requirements: Tina, LTspice and Proteus

Hardware Requirements: Function Generator, CRO, multimeter along with basic

components required for designing the circuit.

Sr. No.	Level 1. Basic 2. Design 3. Advanced 4.Project/Case Study/Seminar	Detailed Lab Description	Hrs.
1	1,2	Design inverting and non-inverting amplifier using IC 741.	2
2	1,2	Design summing amplifier using op-amp IC 741	2
3	1,2	Design difference amplifier using op-amp IC 741	2
4	2,3	Design and analyze Integrator using op-amp IC 741	2

5	2,3	Design and analyze Differentiator using op-amp IC 741	2
6	1,2	Design Wein bridge and RC phase shift Oscillator using op-	2
		amp IC 741	
7	2,3	Design and analyze second order High pass and Low pass	2
		filter using op-amp IC 741	
8	2,3	Design Instrumentation amplifier using 3 Op-Amp.	2

9	1,2	Design Precision rectifier using op-amp IC 741	2
10	2,3	Design Square & Triangular wave generator using op-amp IC	2
		741	
11	1,2	Design Schmitt trigger using op-amp IC 741	2
12	2,3	Design and implement 2bit R-2R ladder DAC.	2
13	2,3	Design and implement flash ADC	2
14	2,3	Design Astable multivibrator using IC 555 for fixed frequency	2
		and variable duty cycle.	
15	2,3	Design Monostable Multivibrator using IC 555.	2
16	2,3	Design High Voltage Low Current voltage regulator using IC	2
		723.	
17	2,3	Design High Voltage High Current voltage regulator using IC	2
		723.	
18	2,3	Design Frequency Modulator using IC 566	2

Theory Assessment:

Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Lab Assessments:

Term work Assessment: At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

Oral/Viva Assessment: The practical and oral examination will be based on entire syllabus.

Text Books:

- 1. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition.
- 2. D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.

Reference Books:

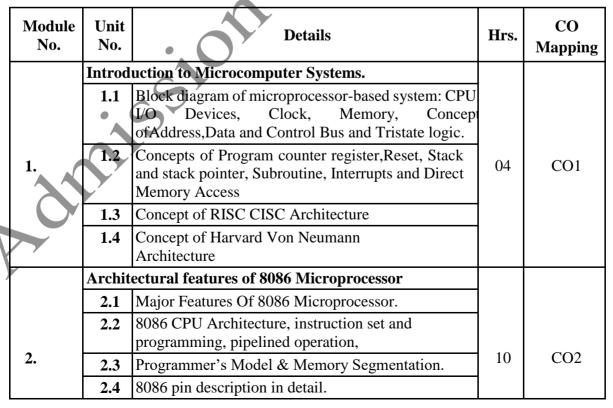
- 1. K. R. Botkar, "Integrated Circuits", Khanna Publishers (2004)
- 2. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata

McGraw Hill, 3rd Edition.

- 3. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.
- 4. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition.
- 5. J. Millman, Christos CHalkias, and Satyabratatajit, Millman's, "Electronic Devices and Circuits," McGrawHill, 3rdEdition.

Course Code	Course Name	Credits
ET211	Microprocessor & Microcontroller	04

Digital System Design


Course Objectives:

- 1. To understand the basic concepts of microcomputer systems.
- 2. To understand the architecture of the 16-bit Microprocessor 8086.
- 3. To understand architecture and programming of 8-bit Microcontroller 8051.
- 4. To develop knowledge of peripheral devices and their interfacing for designing 8051 based applications in Assembly Language.
- 5. To understand the architecture of PIC and AVR microcontrollers.
- 6. To understand the basics of the ARM Architecture.

Course Outcomes:

The learner will be able to

- 1. Understand The Basic Concepts Of Micro Computer Systems.
- 2. Understand The architectural aspects of 8086 microprocessor.
- 3. Program 8051 microcontroller by understanding its architectural aspects.
- 4. Interface various peripheral devices to 8051 microcontrollers.
- 5. Design applications using microcontrollers
- 6. Develop basic knowledge about the ARM architecture.

	2.5	Minimum And Maximum mode pins of 8086.		
	2.6	Read and Write bus cycle of 8086		
		Microcontroller Architecture and bly language programming		
	3.1	Comparison between Microprocessor and Microcontroller		
3.	3.2	Features, architecture and pin configurations, Memory organization, Addressing modes of 8051	06	CO3
	3.3	Assembler directives of 8051. Instruction Set:Data transfer,Arithmetic, Logical,Branching.		
	3.4	Programs related to: arithmetic, logical, delay, input, output, timer, counters, port, serial communication and interrupts.	C	
		al Hardware of 8051 Microcontroller orfacing Applications		
4.	4.1	I/O Port structures, Interrupts, Timers/Counters, Serial Ports And their programming.	08	CO4
7.	4.1	Display Interfacing:7-segment LED display, 16x2 generic alphanumeric LCD display.	00	CO4
	4.2	Analog Devices Interfacing: 8-bitADC/DAC		
	4.4	Motor Interfacing:dc motor,stepper motor and servomotor.		
	PIC a	nd AVR Microcontrollers		
5.	5.1	PIC family Categories and importance (10F/12F/16F/18F), PIC18 Architecture and Features, Assembly Language Programming: Branch, Arithmetic and Logic Instructions. Peripheral Interfacing	06	CO5
	5.2	AVR Microcontroller: Architecture and Features, Standard I/O interrupts		
	5.3	Comparison of PIC and AVR microcontrollers.		
	The A	RM Architecture		
8	6.1	ARM Introduction, Concept of Cortex-A, Cortex-R and Cortex-M, Architectural Inheritance, Introduction and features of ARM7,	05	CO.
76-	6.2	Programmer's Model and Pipelining, Exceptions, Interrupts and Vector Table,	05	CO6
	6.3	Instruction set: Data processing and transfer, control flow. Thumb Instruction Set Support		

Lab Prerequisite:

Basic Electrical and Electronics Engineering, Engineering Physics I & II **Software Requirements:** Experiments can be conducted on Assembler, Emulator **Hardware**

Requirements: Hardware kits

	Lovel		
	Level		
Sr.	1. Basic		
	2. Design	Detailed Lab/Tutorial Description	Hrs.
No.	3. Advanced		
	4. Project/Case		
	Study/Seminar		4
1	1	To perform the basic arithmetic and logical operations using the 8086 Microprocessor	2 (
2	2	To write an assembly language program to search a	2
2		character in a string using 8086	
3	3	To write an assembly language program for password checking using 8086.	2
		To write an assembly language program to perform	
4	1	Arithmetic and Logical Operations using 8051	2
		microcontroller.	
	1	To write an assembly language program To transfer of data	2
5		bytes between Internal and External Memory using 8051	
		microcontroller.	
		To write an assembly language program to perform	
6	2	experiments based on General Purpose Input-Output &	2
		Timers.	
7	3	Programs for Interfacing of SSD/LCD with 8051	2
	_	microcontroller.	
8	3	Program for Serial communication of 8051 using UART.	2
9	3	Programs for Interfacing of Stepper Motor with 8051	2
		microcontroller.	
10	3	Programs for Interfacing of DC Motor with 8051	2
10		microcontroller.	
11	1	Perform DC motor speed control using PWM with PIC	2
11		microcontroller	
12	2	Interface ADC with PIC microcontroller	2
12	3	Interface Different Sensors and LCD with PIC	2
13		microcontroller	
1.4	4	Mini project based on any application related to (8051/	2
14		PIC) microcontroller.	
	_		•

Theory Assessment:

Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be average of score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Lab Assessments:

Term work Assessment: At least 10 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation-based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

Oral/Viva Assessment: The practical and oral examination will be based on entire syllabus.

Text Books:

- 1. Microprocessor and Interfacing: By Douglas Hall (TMH Publication)
- 2. M. A. Mazidi, J. G. Mazidi and R. D. Mckinlay, "The 8051 Microcontroller Embedded systems", Pearson Publications, Second Edition 2006.
- 3. C. Kenneth J. Ayala and D. V. Gadre, "The 8051 Microcontroller & Embedded system using assembly & 'C'", Cengage Learning, Edition 2010.

Reference Books:

- 1. 8086 Microprocessor Programming and Interfacing the PC: By Kenneth Ayala (West Publication)
- 2. Microcomputer Systems: 8086/8088 family Architecture, Programming and Design: By Liu & Gibson (PHI Publication).
- 3. Satish Shah, "The 8051 Microcontrollers", Oxford publication first edition 2010.
- 4. "MCS@51 Microcontroller, Family users Manual"

Course Code	Course Name	Credits
ET212	Entrepreneurship	02

Course Objectives:

- 1. To understand the basic concepts of entrepreneurship.
- 2. To understand the role of entrepreneurship in economic development.
- 3. To understand the importance of opportunity recognition and internal and external analyses to the success of a business venture
- 4. To enable the learners to know the factors contributed in failure of the enterprise

Course Outcomes: Learner will be able to

- 1. Analyze the business environment in order to identify business opportunities
- 2. Identify the elements of success of entrepreneurial ventures
- 3. Evaluate the effectiveness of different entrepreneurial strategies,
- 4. Interpret their own business plan

Module	Detailed Contents	Hrs
1	Conceptual definition of entrepreneurs and entrepreneurship, Advantages and Disadvantages of Being an Entrepreneur, Entrepreneurial motivation, Entrepreneurial characteristics	6
2	Recognizing, assessment and Exploiting the Opportunity, Conducting Internal and External Analyses, Determining the Feasibility of the Concept, Selecting a Marketing Strategy	4
3	 Overview of Franchising and Their Advantages and Disadvantages Overview of Buyouts & Their Advantages and Disadvantages Overview of Family Businesses and Their Advantages and Disadvantages 	4
4	The Overall Business Plan, Purpose of the Business Plan, Components of the Business Plan, Presentation of the Business Plan, Matching the Business Plan to the Needs of the Firm	4
5	The Marketing Plan, Conducting a Market Analysis, Understanding the Target Market, Reaching the Target Market through Locale and Engagement	4
6	Entrepreneurial failure, early stage failure, late stage failure	4

Assessment:

Internal Assessment: 20 marks

Consisting of One Compulsory Class Tests of 20 Marks

Continuous evaluation: Test/Assignments /Quiz/Case studies/Seminar presentation of 20 Marks

End Semester Examination: 30 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Text Books:

1. Fundamentals of Entrepreneurship by H. Nandan, PHI

Reference Books:

- 1. Entrepreneurship by Robert Hisrich, Michael Peters, Dean Shepherd, Sabyasachi Sinha, Mc Graw Hill
- 2. Why startups fail: A new roadmap for entrepreneurial success by Tom Eisenmann

Course Code	Course Name	Credits
ET292	Mini Project II	02

Lab Prerequisite: Mini Project I, Python Programming

Lab Objectives:

- 1. To improve the knowledge of electronics hardware among students
- 2. To familiarize the students with the programming and interfacing of different devices with Arduino and Raspberry Pi Board.
- 3. To increase students' critical thinking ability and provide solutions to some real time problems.
- 4. To acquaint with the process of identifying the needs and converting it into the problem.
- 5. To familiarize the process of solving the problem in a group
- 6. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems
- 7. To inculcate the process of self-learning and research.

Lab Outcomes: The learner will be able to

- 1. Write code using python language using IDE for utilizing the onboard resources.
- 2. Apply the knowledge of interfacing different devices to the Raspberry Pi board to accomplish a given task.
- 3. Identify problems based on societal /research needs.
- 4. Design Raspberry Pi based projects for a given problem.
- 5. Draw the proper inferences from available results through theoretical/experimental/simulations
- 6. Demonstrate capabilities of self-learning in a group, which leads to lifelong learning

Software Requirements:

- 1. Raspbian OS: https://www.raspberrypi.org/downloads/
- 2. Win32 Disk Imager: https://sourceforge.net/projects/win32diskimager/
- 3. SD Card Formatter: https://www.sdcard.org/downloads/formatter/

Online Repository:

- 1. GitHub
- 2. NPTEL Videos on Raspberry Pi and Arduino Programming
- 3. https://www.electronicsforu.com/raspberry-pi-projects
- 4. https://circuitdigest.com/simple-raspberry-pi-projects-for-beginners
- 5. https://www.electronicshub.org/raspberry-pi-projects/

Hardware Requirements:

Raspberry Pi Boards, Sensors and Peripheral

Sr. No.	Level 1. Basic 2. Design 3. Advanced	Detailed Lab/Tutorial Description	LO
	3. Advanced 4.Project/Case Study/Seminar		Mapping

1	1, 2	Introduction to Raspberry Pi: 1.1 What is Raspberry Pi? Downloading and Installation of NOOBS, First PowerUp& Having a Look around, Introduction to the Shell and Staying updated. 1.2 Familiarization with Raspberry PI and perform necessary software installation. Apparatus Requirement: Hardware: Raspberry PI Board, Memory of 16GB, Power adapter, Memory Writer. Software: NOOBS, Raspbian OS, Win32 disk Imager, SD-Formatter software.	LO1, LO2
2	1, 2	Interfacing with Input / Output Devices using Python 2.1 Introduction to Python, Connecting to the outside World with GPIO. 1 To Interface LED/Buzzer with Raspberry PI and write a program to turn ON LED for 1 sec after every 2 sec. Apparatus Requirement: Raspberry PI with inbuilt Python Package, LED, Buzzer. 2.2 To interface Push Button / Digital Sensor (IR/LDR) with Raspberry PI and write a program to turn ON LED when Push button is pressed or at sensor detection. Apparatus Requirement: Raspberry PI with inbuilt Python Package, Push Button Switch, Digital Sensor (IR/LDR). 2.3. To interface analog sensor using MCP 3008 analog to digital converter chip. Apparatus Requirement: Raspberry PI with inbuilt Python Package, analog sensor, MCP 3008 chip.	LO2, LO4, LO5
3	1, 2	Interfacing Temperature Sensor, Motors, Display Devices. 3.1 Introduction to Temperature sensor (Analog and Digital), Relays, Motors (DC, Stepper) and Driver circuits. 3.2 To interface DHT11 sensor with Raspberry PI and write a program to print temperature and humidity readings. Apparatus Requirement: Raspberry PI with inbuilt Python Package, DTH11 Sensor. 3.3 To interface motor using relay with Raspberry PI and write a program to turn ON motor when push button is pressed. Apparatus Requirement: Raspberry PI with inbuilt Python Package, Relays, Motor Driver, Motors. 3.4 To interface OLED with Raspberry PI and write a program to print temperature and humidity readings on it. Apparatus Requirement: Raspberry PI with inbuilt Python Package, OLED display	LO2, LO4, LO5

4	2, 3	Interfacing Communication Devices and Cloud Networking 4.1 Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods. 4.2 To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphones using Bluetooth/Zigbee/RFID/WIFI. (Any-one can be used for performing) Apparatus Requirement: Raspberry PI with inbuilt Python Package, Bluetooth/Zigbee/RFID/WIFI. 4.3 Introduction to Cloud computing, different types cloud networks and interconnection using Raspberry Pi 4.4 Write a program on Raspberry PI to upload temperature and humidity data from thingspeak cloud. Apparatus Requirement: Raspberry PI with inbuilt Python Package, Cloud networks such as thingspeak(open source), AWS, Azure, etc. anyone can be used for understanding purpose and building projects,	LO2, LO3, LO4, LO5
5	2, 3	Understanding of Communication Protocols 5.1 Introduction to MQTT, IFTTT protocols and configuration steps. 1 Write a program on Raspberry Pi to publish temperature data to MQTT broker 5.2 Write a program on Raspberry Pi to subscribe to MQTT broker for temperature data and print it. 5.3 Configuration of Web Server using Raspberry Pi.	LO2, LO3, LO4, LO5

	ı		1
		Sample Projects	
		1. MQTT Based Raspberry Pi Home Automation:	
		Controlling Raspberry Pi GPIO using MQTT Cloud	
		2. License Plate Recognition using Raspberry Pi and	
		OpenCV	
		3. Real Time Face Recognition with Raspberry Pi and	
		OpenCV	
		4. Smart Garage Door Opener using Raspberry Pi	
		5. Remote Controlled Car Using Raspberry Pi and	
		Bluetooth	
		6. Fingerprint Sensor based door locking system using	
		Raspberry Pi	
		7. Raspberry Pi Ball Tracking Robot using Processing	
6	4	8. Web Controlled Home Automation using Raspberry	LO3, LO6
		Pi	
		9. Line Follower Robot using Raspberry Pi	
		10. Raspberry Pi based Smart Phone Controlled Home	
		Automation	
		11. Web Controlled Raspberry Pi Surveillance Robotic	
		Car	
		12. Raspberry Pi Based Weight Sensing Automatic Gate	
		13. Raspberry Pi Emergency Light with Darkness and	
		AC Power Line Off Detector	
		14. Detecting Colors using Raspberry Pi and Color	
		Sensor TCS3200	
		15. Measure Distance using Raspberry Pi and HCSR04	
		Ultrasonic Sensor	
		16. Call and Text using Raspberry Pi and GSM Module	
		17. Raspberry Pi Home Security System with Email	
		Alert	
		18. Raspberry Pi Based Obstacle Avoiding Robot using	
		Ultrasonic Sensor	
		19. Web Controlled Notice Board using Raspberry Pi	
		20. RF Remote Controlled LEDs Using Raspberry Pi	
		21. RFID and Raspberry Pi Based Attendance System	
		22. Raspberry Pi Interactive Led-Mirror	
		23. Garage Door monitor using Raspberry Pi	
		24. Raspberry Pi Digital Code Lock on Breadboard	
		25. Electronic Voting Machine using Raspberry Pi	

Guidelines for Mini Project

Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.

Students should do surveys and identify needs, which shall be converted into problem statements for mini projects in consultation with faculty supervisor/head of department/internal committee of faculties.

Students shall submit an implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini projects.

A log book to be prepared by each group, wherein the group can record weekly work progress, guide/supervisor can verify and record notes/comments.

Faculty supervisors may give inputs to students during mini project activity; however, focus shall be on self-learning.

Students in a group shall understand the problem effectively, propose multiple solutions and select the best possible solution in consultation with the guide/ supervisor.

Students shall convert the best solution into a working model using various components of their domain areas and demonstrate.

With the focus on self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on a case by case basis.

Lab Assessments:

Termwork, Practical and Oral:

Term Work The review/ progress monitoring committee shall be constituted by the head of departments of each institute.

The progress of the mini project to be evaluated on a continuous basis, minimum two reviews in each semester.

In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

Distribution of Term work marks for both semesters shall be as below;

- Marks awarded by guide/supervisor based on log book: 10
- Marks awarded by review committee 2 10
- Quality of Project report: 05

Review/progress monitoring committee may consider the following points for assessment based on following general guidelines.

A students' group shall complete project in all aspects including,

- Identification of need/problem
- Proposed final solution
- Procurement of components/systems
- Building prototype and testing

Two reviews will be conducted for continuous assessment, First shall be for finalisation of problem and proposed solution Second shall be for implementation and testing of solution.

Oral/Viva Assessment:

Assessment criteria of Mini Project. Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms

- 12. Contribution of an individuals as member or leader
- 13. Clarity in written and oral communication

All criteria in generic may be considered for evaluation of performance of students in mini projects. Guidelines for Assessment of Mini Project Practical/Oral Examination:

Report should be prepared as per the guidelines issued.

Lab Prerequisite: ECP1 Project

Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by the head of Institution. Students shall be motivated to publish a paper based on the work in Conferences/students competitions. Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual as member or leader
- 8. Clarity in written and oral communication

Text Books:

- 1. Raspberry Pi Documentation: https://www.raspberrypi.org/documentation/
- 2. The Official Raspberry Pi Beginner's Book by **raspberrypi.org/magpi**: https://www.raspberrypi.org/magpi-issues/Beginners_Book_v1.pdf
- 3. The Official Raspberry Pi Projects Book by **raspberrypi.org/magpi**: https://www.raspberrypi.org/magpi-issues/Projects_Book_v1.pdf

References:

- 1. Simon Monk, "Hacking Electronic: Learning Arduino and Raspberry Pi", McGraw-Hill Education TAB; 2 edition (September 28, 2017)
- 2. Simon Monk, "Raspberry PI Cookbook Software and Hardware Problems and Solutions" O'Reilly 2nd Edition
- 3. Simon Monk, Programming the Raspberry Pi, 2nd Edition: Getting Started with Python" The McGraw Hill
- 4. "DK Workbooks: Raspberry Pi Project Workbook", DK Children; Workbook edition (March 7, 2017)
- 5. Donald Norris, "Raspberry Pi Electronic Projects for Evil Genius", McGraw-Hill Education TAB; 1 edition (May 20, 2016)

Course Code	Course Name	Credits
ET 301	Digital Communication	04

Electronic Communication System, Signals and systems

Course Objectives:

- 1. To understand the basics of probability theory and Digital Communication
- 2. To Understand the basics of information theory, source coding techniques.
- 3. To evaluate performance of different error control coding schemes.
- 4. To compare the performance of line c distinguish various digital modulations techniques.
- 5. To understand impulse response of a matched filter for optimum detection

Course Outcomes:

After successful completion of the course learner will be able to

- 1. Understand the basics of probability theory and Digital Communication.
- 2. Identify various source coding schemes
- 3. Design and implement different error correction codes
- 4. Describe and determine the performance of line codes and methods to mitigate inter symbol interference
- 5. Describe various digital modulations techniques.
- 6. Illustrate the impulse response of a matched filter for optimum detection

Theory Syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping		
1	Introduction to Probability Theory and Digital	Information, Probability, Conditional Probability of independent events, Relation between probability and probability Density, Rayleigh Probability Density, CDF, PDF.	05	01		
	Communication					
2	Information Theory and Source Coding	Block diagram and sub-system description of a digital communication system, measure of information and properties, entropy and its properties Shannon's Source Coding Theorem, Shannon- Fano Source Coding, Huffman Source Coding Differential Entropy, joint and conditional entropy, mutual information and channel capacity, channel coding theorem, channel capacity theorem	06	02		

3	Error Control Systems	Types of error control, error control codes, linear block codes, systematic linear block codes, generator matrix, parity check matrix, syndrome testing, error correction, and decoder implementation Systematic and Non-systematic Cyclic codes: encoding with shift register and error detection and correction Convolution Codes: Time domain and transform domain approach, graphical representation, code tree, trellis, state diagram, decoding methods	09	03
4	Baseband Modulation and	4.1 Discrete PAM signals and it's power spectra Inter-symbol interference, Nyquist criterion for zero ISI,	05	04
	Demodulation and	sinusoidal roll-off filtering, correlative coding,		
		equalizers, and eye pattern		
5	Bandpass Modulation &	Band-pass digital transmitter and receiver model, digital modulation schemes	10	05
	Demodulation	Generation, detection, signal space diagram, spectrum,	10	05
		bandwidth efficiency, and probability of error analysis		
		of: Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary Phase Shift Keying		
		(BPSK) Modulation, Quaternary Phase Shift Keying		
		QPSK), M- ary PSK Modulations, Quadrature		
		Amplitude Modulation (QAM), Minimum Shift Keying (MSK)		
6	Optimum	Baseband receiver, Optimum Receiver and Filter		
	Reception of	Matched Filter and its probability of error, Coherent	04	06
	Digital Signal	Reception.		

Laboratory Syllabus:

Sr. No.	Level 1.Basic 2.Design 3.Advanced 4.Project/ Case Study /Seminar	Detailed Lab/Tutorial Description	Hours
1	Basic	Study and analyze Line codes	02
2	Advance	Error detection and correction using Hamming code virtuallab http://vlabs.iitb.ac.in/vlabs-dev/labs/mit_bootcamp/comp_netwo r ks_sm/labs/exp1/index.php	02
3	Basic	To Study Generation & reception of ASK & its spectral analysis.	02
4	Basic	To Study Generation & reception of FSK & its spectral analysis.	02
5	Basic	To Study Generation & reception of PSK & its spectral analysis.	02
6	Advance	To observe the effect of signal Distortion using EYE-Diagram	02
7	Design	To Study and perform Linear Block codes	02
8.	Design	To Study and perform Cyclic Codes	02
9.	Design	To Study and perform Convolutional Codes	02
10.	Advance	Matched filter impulse response for a given input	02

Theory Assessment:

Internal Assessment for 40 marks:

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Laboratory Assessment:

Term work Assessment: At least 08 Experiments including 02 simulations covering entire syllabus must be given during the —Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time.

Oral/Viva Assessment: The practical and oral examination will be based on entire syllabus.

Text Books:

- 1. Digital Communication, Sanjay Sharma, S. K. Kataria and sons
- 2. H. Taub, D. Schilling, and G. Saha, —Principles of Communication Systems, Tata Mc- Graw Hill, New Delhi, Third Edition, 2012.
- 3. Lathi B P, and Ding Z., —Modern Digital and Analog Communication Systems, Oxford University Press, Fourth Edition, 2009.
- 4. Haykin Simon, —Digital Communication Systems, John Wiley and Sons, New Delhi, Fourth Edition, 2014

References:

- 1. Sklar B, and Ray P. K., —Digital Communication: Fundamentals and applications, Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.
- 2. T L Singal, —Analog and Digital Communication, Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 3. P Ramakrishna Rao, —Digital Communication, Tata Mc-Graw Hill, New Delhi, First Edition, 2011.
- 4. M F Mesiya, —Contemporary Communication systems, Mc-Graw Hill, Singapore, First Edition, 2013

Course Code	Course Name	Credits
ET 302	Discrete Time Signal Processing	03

Signals and systems

Course Objectives:

- 1. To introduce students with Discrete Fourier transform and Fast Fourier transforms for analysis of discrete time signals and systems.
- 2. To use and design techniques for implementation of IIR digital filters.
- 3. To use and design techniques for implementation of FIR digital filters.
- 4. To introduce Finite Word Length effects in Digital Filters.
- 5. To introduce the students to digital signal processors and its applications.
- 6. To use and understand multirate digital signal processing and adaptive filters.

Course Outcomes: The learner will be able to

- 1. Analyze the discrete time signals and system using different transform domain techniques
- 2. Apply the knowledge of design of IIR digital filters to meet arbitrary specifications.
- 3. Apply the knowledge of design of FIR digital filters to meet arbitrary specifications
- 4. Understand the effect of hardware limitations on performance of digital filters.
- 5. Develop different signal processing applications using DSP processors
- 6. Analyze multirate signal processing and adaptive filters.

Module	Detailed Content	Hours	CO Mapping
I	Discrete Fourier Transform and Fast Fourier Transform: Definition and Properties of DFT, IDFT, Circular convolution, Computation of linear convolution using circular convolution, Filtering of long data sequences: Overlap-Save and Overlap-Add Method FFT: Fast Fourier Transforms (FFT), Radix-2 decimation in time and decimation in frequency FFT algorithms, inverse FFT	08	CO1
II	IIR Digital Filters: Analog filter design -Butterworth filters, Chebyshev Type I filters, Mapping of S-plane to Z-plane, IIR filter design by impulse invariance method and Bilinear transformation method, Design of IIR digital Butterworth filters and Chebyshev Type I filters. Analog and Digital frequency transformations	08	CO2
III	FIR Digital Filters- Introduction of FIR digital filters, Minimum Phase, Maximum Phase, Mixed Phase and linear phase FIR filters, location of the zeros of linear phase FIR filters, Gibbs phenomenon, Design of FIR filters using Window techniques (Rectangular, Hamming, Hanning, Blackmann), Design of FIR filters using Frequency Sampling technique, Comparison of FIR & IIR	07	CO3
IV	Finite Word Length effects in Digital Filters- Quantization, truncation and rounding, Quantization of filter	06	CO4

	Coefficients, Product quantization error, Zero- input limit cycle oscillations, Overflow limit cycle oscillations.		
V	DSP Processors- Introduction to General Purpose and Special Purpose, DSP processors, Architecture of TMS320C6X DSP processors, multiplier and accumulator (MAC), Applications of digital signal processing-Speech processing, Radar Signal Processing, ECG and EEG signals analysis.	06	CO5
VI	Multirate DSP and Adaptive Filters: Introduction and concept of Multirate Processing, Decimator and Interpolator, Sub-band coding of speech signal. Adaptive filters: Introduction, Applications of adaptive filters-Adaptive filters as a noise canceller, Adaptive channel equalization, Echo cancellation	04	CO6

Theory Assessment:

Internal Assessment: 40 marks

Consisting of Two compulsory internal assessments 40 Marks each. The final marks will be the average score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Case study: Following are the sample case study list on Digital time signal processing. It has to be performed in a group. One group of 3-4 students can select any one topic.

- 1. To implement and analyze the effectiveness of digital time signal processing techniques in enhancing real-time human speech by reducing background noise in a communication system.
- 2. Speech Enhancement Using Spectral Subtraction in MATLAB/Python.
- 3. DSP-Based ECG Signal Filtering and Feature Extraction.
- 4. Audio and speech processing.

Text Books:

- 1. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press, 2015
- 2. Nagoor Kani, "Digital Signal Processing", Tata McGraw Hill Education Private Limited.
- 3. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing", A Practical Approach by, Pearson Education
- 4. S. Salivahanan, C. Gnanpriya, Digital Signal processing, McGraw Hill
- 5. Ramesh Babu, "Digital Signal Processing", Scientech Publication (India) Private Limited

References:

- 1. Proakis J., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education.
- 2. B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", Tata McGraw Hill, 2004.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete Time Signal Processing", Pearson, 8th Indian Reprint, 2004.
 - 4. https://nptel.ac.in/courses/11710206

Course Code	Course Name	Credits
ET 303	Professional Communication and Ethics-II	02

Course Objectives:

By the end of the course, learners will be able to:

CO1: Develop awareness of academic discourse genres, their communicative purpose, rhetorical structure, and disciplinary conventions.

CO2: Enhance academic writing skills through practice in research paper writing, literature reviews, proposals, and abstracts.

CO3: Build precision, objectivity, and abstraction in language use through academic and technical features like nominalisation, modality, and lexical cohesion.

CO4: Train students in effective multimodal and oral communication through data presentation, proposal presentations, and academic discourse strategies.

CO5: Cultivate professional and interpersonal communication skills, including resume writing, interviews, and group discussions.

CO6: Promote ethical and responsible communication practices, including citation conventions, digital discourse, and professional etiquette.

Course Outcomes:

Upon successful completion of this course, students will be able to:

CO1: Identify, analyze and write research papers on the basis of the structure, purpose, and rhetorical features of academic and professional genres.

CO2: Define problem, solution of proposals, and literature reviews using genre-specific conventions.

CO3: Demonstrate professional communication skills through resume writing, group discussions, and interviews.

CO4: Present data effectively using visual-verbal coordination, discourse markers, and spoken register features.

CO5: Apply ethical use of language in digital communication and virtual collaboration.

CO6: Exhibit etiquette in email writing, academic and professional communication settings.

Sr. No.	Module	Detailed Content	Hours	CO Mapping
I	Research Paper Writing - Structure, Style and Language	Academic Discourse Genres: Purpose, aim, and format of research papers; acquisition of academic genre awareness Literature Review as Intertextual Practice: Summarising sources, citation as stance and voice, avoiding plagiarism using quotation and	03	CO1

	paraphrasing effectively; developing intertextual synthesis and citation skills Research Methodology: Disciplinary Discourse (the specific language and conventions used within a particular academic		
	field), and Nominalisation (the transformation of verbs or adjectives into nouns to create a more formal, abstract style of writing, e.g., "analyse" → "analysis"); acquiring precision and abstraction in writing		2
	Presenting Data: Visual-verbal integration, cohesive devices in figure descriptions; developing multimodal expression and linguistic labelling skills	5	
	Writing the Discussion: Move structure analysis, use of modality and evaluative language; acquiring evaluative and critical commentary skills Perferencing Conventions: IEEE sitetion styles.		
	Referencing Conventions: IEEE citation style, citation as grammatical metaphor; mastery of referencing conventions and stylistic precision Writing an Abstract: Genre analysis and		
	rhetorical moves (Swales' IMRAD model); summarisation and structural awareness of academic abstracts Coherence and Cohesion: Anaphora, cataphora,		
	lexical cohesion; theme—rheme structure, discourse markers and lexical bundles; acquiring cohesion strategies and discourse flow management		
II Writing Technical Proposals	Proposal as Genre: Move structure (problem- solution pattern), audience awareness, understanding persuasive academic genres Executive Summary: Information packaging,	03	CO2
	genre-specific register; acquisition of concise summarisation techniques Defining the Problem and Solution: Argumentation structure, lexical density, developing logical structuring and technical vocabulary		
	Technical Language Use : Hedging, modality, nominal style; acquiring formality ,		

		objectivity, and linguistic caution in writing		
		Writing with Purpose: Field, tenor, and mode (Systemic Functional Linguistics); enhancing genre and register control		
		Presentation on Proposal: Spoken register features and visual-verbal coordination; developing professional oral communication strategies		
III	Employability Skills for Oral	Group Discussion: Turn-taking, topic management, repair strategies, politeness theory; developing interactive and collaborative discourse skills	03	CO3
		Case-based Discussions: Conflict resolution using discourse strategies, team and cross-cultural communication (intercultural pragmatics), language use; developing problem-solving and culturally sensitive communication skills		
		Cover Letter, Resume and Statement of Purpose: Genre conventions, stance and engagement; developing personal narrative and professional identity construction		
	•	Interview Skills: Speech Acts (Self-introduction, requests, justifications), pragmatics of self-presentation; mastering pragmatic competence and strategic self-representation		
	.5	The interpersonal skills required for GD and Interview should be dealt with in the form of role play in the tutorial class.		
IV	Presentation Skills	Presentation Skills: Spoken academic discourse, paralinguistic features, discourse intonation; acquiring fluency and control in formal presentations	02	CO4
		All the strategies and skills required for preparing slides, delivering content should be adhered to while teaching presentation skills.		

Ethical Codes of Conduct	Ethical Codes of Conduct Professional Responsibilities: Register variation and power relations; understanding discourse and institutional power Ethical Codes (IEEE, ASME): Institutional discourse analysis; acquisition of technical and regulatory genre conventions Digital and Cyber Ethics: Multimodal discourse and netiquette; mastering digital communication norms and ethical language use Virtual Collaboration: Language of professionalism in asynchronous communication; acquiring discourse strategies for virtual team environments VI Etiquettes Classroom and Workplace Etiquette with 01 CO6					
discourse and institutional power Ethical Codes (IEEE, ASME): Institutional discourse analysis; acquisition of technical and regulatory genre conventions Digital and Cyber Ethics: Multimodal discourse and netiquette; mastering digital communication norms and ethical language use Virtual Collaboration: Language of professionalism in asynchronous communication; acquiring discourse strategies for virtual team environments VI Etiquettes Classroom and Workplace Etiquette with special reference to email etiquette	discourse and institutional power Ethical Codes (IEEE, ASME): Institutional discourse analysis; acquisition of technical and regulatory genre conventions Digital and Cyber Ethics: Multimodal discourse and netiquette; mastering digital communication norms and ethical language use Virtual Collaboration: Language of professionalism in asynchronous communication; acquiring discourse strategies for virtual team environments VI Etiquettes Classroom and Workplace Etiquette with special reference to email etiquette	V	Ethical Codes of	of professional language; acquiring critical evaluation of ethical language use Professional Responsibilities: Register		CO5
discourse and netiquette; mastering digital communication norms and ethical language use Virtual Collaboration: Language of professionalism in asynchronous communication; acquiring discourse strategies for virtual team environments VI Etiquettes Classroom and Workplace Etiquette with special reference to email etiquette	discourse and netiquette; mastering digital communication norms and ethical language use Virtual Collaboration: Language of professionalism in asynchronous communication; acquiring discourse strategies for virtual team environments VI Etiquettes Classroom and Workplace Etiquette with special reference to email etiquette			discourse and institutional power Ethical Codes (IEEE, ASME): Institutional discourse analysis; acquisition of technical and		0
professionalism in asynchronous communication; acquiring discourse strategies for virtual team environments VI Etiquettes Classroom and Workplace Etiquette with special reference to email etiquette	professionalism in asynchronous communication; acquiring discourse strategies for virtual team environments VI Etiquettes Classroom and Workplace Etiquette with special reference to email etiquette O1 CO6			discourse and netiquette; mastering digital communication norms and ethical language use		
special reference to email etiquette	special reference to email etiquette			professionalism in asynchronous communication; acquiring discourse		
		VI	Etiquettes		01	CO6

Detail Tutorial Sessions

Sr.	Tutorials	Details of Activities	Hours	CO
No.	Tutoriais	Details of Metivities	Hours	Mapping
I	Tutorial 1	Role Play on Interpersonal Skills: Leadership	2 hours	CO3 CO4
		Skills, Collaboration, Teamwork, Conflict		
		Resolution, Negotiation, and Time Management		OV
II	Tutorial 2	Student Grant Proposal Form and Group	2 hours	CO2, CO5, CO6
		Discussion : Case-study Approach		
III	Tutorial 3	Group Discussion continued	2 hours	CO3, CO5,CO6
IV	Tutorial 4	Cover letter, Resume and SOP	2 hours	CO3,CO5
V	Tutorial 5	Performing Mock-interview	2 hours	CO3, CO5, CO6
VI	Tutorial 6	Mock Interview continued	2 hours	CO3, CO5, CO6
VII	Tutorial 7	Final Interview	2 hours	CO3, CO5, CO6
VIII	Tutorial 8	Final Interview	2 hours	CO3,CO5, CO6
IX	Tutorial 6	Performing Mock-Group Discussion	2 hours	CO3, CO5, CO6
X	Tutorial 7	Final Group Discussion	2 hours	CO3, CO5, CO6
XI	Tutorial 8	Research Methodology: Survey Method and Questionnaire	2 hours	CO1
XII	Tutorial 9	Final presentation on Research Paper	2 hours	CO4, CO5, CO6
XIII	Tutorial 10	Final Presentation on Proposal	2 hours	CO4,CO5, CO6

Term work Assessment:

Term work will consist of-Research paper - 05 marks, Research paper presentation-10 marks Group Discussion-10 marks Interviews-5 marks Technical Proposal- 5 marks Proposal Presentation- 10 marks Attendance -5 marks

The final certification and acceptance of term work ensures that satisfactory performance in class activities and assignments is met by the student.

Text Books:

Raman Meenakshi & Sharma Sangeeta, Technical Communication Principles and Practice, Second edition, Oxford University Press.

Dr, S. S. Bhakar & Dr. Tarika Singh. A handbook for Writing Research Paper. First edition, Bharati Publications, New Delhi.

3. Virendra Singh Nirban, Krishna Mohan, RC Sharma, Business Correspondence and Report Writing

Course Code	Course Name	Credits
ET 304	Java Programming	01

Lab Objectives: Three to Four

- L1. To understand the functions and expression used in java coding
- L2. To learn how to implement object oriented design with Java
- L3. To understand how to use Java API's for program development
- L4. To understand how to design applications with threads in Java
- L5. To learn how to design Graphical User Interface (GUI) with Java Swing
- **L6.** To learn how to handle and manage files in Java.

Lab Outcomes: Six Course Outcomes

- **LO1:** Learn to write, compile, run and test simple Java programs
- LO2. Learn to implement object oriented programming concepts using Java Programming.
- LO3. Learn to use and access packages and Applet's .
- LO4. Understanding multithreading in Java and designing simple applications.
- LO5. Learn to design GUI applications using Java Swing.
- LO6. Managing Files and I/O Handling in Java.

Hardware Requirements: PC with windows OS, 64bit Laboratory Syllabus:

Sr. No.	Level 1. Basic 2. Design 3. Advanced 4. Project/ CaseStudy/ Seminar	Detailed Lab/Tutorial Description	LO Mapping
1		Java Program to find GCD of two number	LO1
2	5	Java program to convert binary number to Decimal and vise-versa	LO1
3	1	Java program to multiply two matrix using multi-dimensional array	LO1
4	2	Write a program to implement default and parameterized constructors.	LO2
5	2	Java program of painting in Applet	LO3
6	3	Write a program to implement multithreaded	LO4
7	3	To develop a program to display a table using swings.	LO5
8	3	Write a program to demonstrate Exception handling	LO6
9	1	Create a text file using Java file writer.	LO6
10	4	Mini Project using concept of Principles of Programming	LO6

Lab Assessments:

- **1. Term work Assessment:** Term work should consist of 10 experiments. Journal must include at least 2 assignments on content of theory and practical of "Java Programming". The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work. Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments: 05-marks).
- **2. Oral/Viva Assessment**: Practical & oral exam to be conducted by Internal & External examiners. Practical execution (10 marks) & Oral (15 marks).

Text Books:

- 1. E Balagurusamy, "Programming with Java A Primer", Fourth Edition, Tata Mcgraw-Hill Publication, 2010, ISBN: 978-0-07-014169
- 2. Khalid A. Mughal, Rolf W. Rasmussen, A Programmer's Guide to Java™ SCJP Certification Third Edition , Addison -Wesley
- 3. Joyce Farrell. Programming Logic and Design, Comprehensive, 6th edition

References:

- 1.H.M. Deitel, P.J. Deitel, "Java How to Program", Fifth Edition, PHI Publication, 2003, ISBN:81-203-2371-8
- 2.Bruce Eckel "Thinking in Java", PHI Publication
- 3. Patric Naughton, Michael Morrsison, "The Java Handbook" McGraw Hill Publication
- 4. Steven Holzner et al. Java 2 Programming, Black Book, Dreamtech Press, 2009

Course Code	Course Name	Credits
ET 305	IoT Basics & Smart Sensors	04

Prerequisite:

Microprocessor & Microcontroller

Course Objectives: Introduce evolution of internet technology and need for IoT.

- 1. Discuss on IoT reference layers and various protocols and software.
- 2. To provide in depth knowledge in physical principles applied in sensing, measurement and a comprehensive understanding on how measurement systems are designed, calibrated, characterized, and analyzed.
- 3. To introduce the students to sources and detectors of various Optical sensing mechanisms and provide in-depth understanding of the principle of the basic laws and phenomena on which operation of sensor transformation of energy is based, measurement and theory of instruments and sensors.
- 4. Train the students to build IoT systems using sensors, single board computers and open source IoT platforms.
- 5. Make the students apply IoT data for business solutions in various domains in a secure manner.

Course Outcomes:

- 1. Identify the IoT networking components with respect to the OSI layer.
- 2. Build schematic for IoT solutions.
- 3. Design and develop IoT based sensor systems.
- 4. Select IoT protocols and software.
- 5. Evaluate the wireless technologies for IoT.
- 6. Appreciate the need for IoT Trust and variants of IoT and compete in the design, construction, and execution of systems for measuring physical quantities

Theory Syllabus:

Sr.	Module	Detailed Content	Hours	CO
No.		Y		Mapping
I	Introduction to	Defining IoT, Characteristics of IoT, Physical design of	05	CO1
	Internet of	IoT, Logical design of IoT, Functional blocks of IoT,		
	Things	Communication models & APIs, Trends in the Adoption		
	• 5	of IoT, Societal Benefits of IoT, Risks, Privacy, and		
		Security. Exemplary Device Boards, Arduino, Linux on		
	,	Raspberry, Interface and Programming & IOT Device.		
		Hardware Platforms and Energy Consumption, Operating		
		Systems, Time Synchronization, Positioning and		
	V ′	Localization, Medium Access Control, Topology and		
		Coverage Control, Routing: Transport Protocols,		
		Network Security, Middleware, Databases		
- 11			07	CO2
II		Sensor fundamentals and characteristics, Optical Sources	07	CO2
	G : 1	and Detectors, Intensity Polarization and Interferometric		
	Sensing and	Sensors, Strain, Force, Torque and Pressure sensors,		
	Actuation	Position, Direction, Displacement and Level sensors,		
		Velocity and Acceleration sensors, Flow, Temperature and		
		Acoustic sensors, Actuators and its types: Hydraulic,		
		Pneumatic, Electrical, Thermal, Magnetic		

III	Networking and the Internet of Things	IoT and Machine to Machine Communications, IoT protocols, Network configurations, Network Operator Requirements, SNMP, NETCONF, YANG, Interoperability in IoT. SDN	06	CO3
IV	Sensor Networks and IoT	Characteristic and challenges, WSN vs Adhoc Networks, Sensor node architecture, Physical layer and transceiver design considerations in WSNs, Energy usage profile, Choice of modulation scheme, Dynamic modulation scaling, Antenna considerations. Sensor Network Architecture: Data Dissemination, Flooding and Gossiping-Data gathering Sensor Network Scenarios, Optimization Goals and Figures of Merit, Design Principles for WSNs- Gateway Concepts, Need for gateway, WSN and Internet Communication, WSN Tunneling, Amplifiers and Sensor Noise, Importance and Adoption of Smart Sensors, Architecture of Smart Sensors	09	CO4
V	Cloud Computing	Interfacing and data logging with cloud, Evolution of Cloud Computation, Commercial clouds and their features, open source IoT platforms, cloud dashboards, Fog Computing, Introduction to big data analytics and Hadoop.	07	CO5
VI	Developing Internet of Things Data Analytics and Tools for IoT	IoT security, Need for encryption, standard encryption protocol, lightweight cryptography, Quadruple Trust Model for IoT-A – Threat Analysis and model for IoT-A, Cloud security		CO6

Lab Syllabus

Sr.	Level	Detailed Lab/Tutorial Description	Hours
No	1. Basic 2. Design 3. Advanced 4. Project Case Study/ Seminar		
1	Basic	IoT systems Working with Raspberry pi using Python. Arduino platform Working with open source clouds	02
3		Python Programming for IoT Systems: Basic operations, String manipulation, Dictionary, Signal plotting, processing and graphics on cloud	02
3	Basic	Develop a displacement measurement system with the following sensors: i. Inductive transducer (LVDT) ii. Hall effect sensor	02

4	Design	After studying the characteristics of temperature sensors listed below, develop a temperature measurement system for a particular application using the suitable sensor. i. Thermocouple principles ii. Thermistor and linearization of NTC Thermistor iii. Resistance Temperature Detector iv. Semiconductor Temperature sensor OA79 v. Current output absolute temperature sensor Based on sensing experiments carried out suggest a noncontact method and	02
		try to complete its proof of concept.	
5	Basic	Embedded Programming and IoT: C programming, Declarations and Expressions, Arrays, Pointers, Constructs, Data structures and Linked list, Embedded C (Keil).	02
6	Design	Working with ARM (Keil and energia) Sub Task 1: Peripheral programming of ARM7 board Sub Task 2: PWM generation Sub Task 3:Configuring CC3200, wifi configuration ,HTTP and MQTT Protocol	02
7	Basic	Working with MSP430 (CCStudio) Sub Task 1: Port programming of MSP430 microcontrollers Sub Task 2: Analog to Digital Conversion using MSP430 microcontroller Sub Task 3: LCD display of characters and numbers. Sub Task 4: Timer	02
8	Design	Low power wireless transmission using Zigbee Sub Task 1: Interfacing Zigbee controller with MSP 430 microcontroller using SPI/UART. Sub Task 2: Programming sleep and wake up mode of MSP 430.	02
9	Advanced	Design a method to analyze liquid flow velocity using a non-contact measurement technique(Laser/Ultrasonic sensor). Record the dynamic flow velocity using LabVIEW	02
10	Advanced	Consider a real time data available in college campus and develop a data analytic system to determine the average, trend and prediction	02
11	Project	Mini Project	04

Software Requirements:

Arduino IDE, Noobs, Keil and energia, CCStudio

Hardware Requirements:

Arduino, Raspberry Pi, ARM7 Board, MSP430, Inductive transducer, Hall Effect sensor, Thermocouple, Thermistor, Temperature sensor, LCD Display, Zigbee Chip, Motors, LabVIEW and Peripherals, Miscellaneous

Theory Assessment:

Internal Assessment for 40 marks:

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Laboratory Assessment:

Term work for 25 marks:

At least 10 Experiments from the above mentioned list must be performed during the "Laboratory session batch wise". A mini project based on the entire syllabus must be performed by every student

Individually (can be hardware or Computation/simulation based project must be encouraged). Term work assessment must be based on the overall performance of the student with experiments and assignments graded from time to time.

End Semester Practical/Oral Examination: 25 Marks

Pair of Internal and External Examiner should conduct practical/viva based on contents. Distribution of marks for practical/viva examination shall be as follows:

Practical Examination: 15 Marks Oral Examination: 10 Mark

OR

Assessment based on NPTEL course grades and capstone project.

Text Books:

- 1. Alessandro Bassi, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob van Kranenburg, Sebastian Lange, Stefan Meissner, "Enabling things to talk"
- 2. Designing IoT solutions with the IoT Architecture Reference Model", Springer Open, 2016
- 3. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis Karnouskos, Stefan Avesand, David Boyle, "From Machine to Machine to Internet of Things", Elsevier Publications, 2014.
- 4. Jacob Fraden, "HandBook of Modern Sensors: physics, Designs and Applications", 2015, 3rd edition, Springer, New York.
- 5. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland.

References:

- Vijay Madisetti, Arshdeep Bahga, Adrian McEwen (Author), Hakim Cassimally "Internet of Things A Hands-on-Approach" Arshdeep Bahga & Vijay Madisetti, 2014
 LuYan, Yan Zhang, Laurence T. Yang, Huansheng Ning, The Internet of Things: From RFID to the
- LuYan, Yan Zhang, Laurence T. Yang, Huansheng Ning, The Internet of Things: From RFID to the Next-Generation Pervasive Network, Aurbach publications, March, 2008.
- 3. RonaldL. Krutz, Russell Dean Vines, Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Wiley-India, 2010.
- 4. John G Webster, "Measurement, Instrumentation and sensor Handbook", 2017, 2nd edition, CRC Press, Florida.
- 5. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, Wiley

Text Books : (For Laboratory)

- 1. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis Karnouskos, Stefan Avesand, David Boyle, "From Machine to Machine to Internet of Things", Elsevier Publications, 2014.
- 2. Jacob Fraden, "HandBook of Modern Sensors: physics, Designs and Applications", 2015, 3rd edition, Springer, New York.
- 3. John H. Davies, "MSP430 Microcontroller Basics", 2011, 2nd edNewnes publishing, New York.
- 4. Holger Karl, Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks" 2011, 1st ed., John Wiley & Sons, New Jersey

References: (For Laboratory)

- 1. Vijay Madisetti, Arshdeep Bahga, Adrian McEwen (Author), Hakim Cassimally "Internet of Things: A Hands-on-Approach" Arshdeep Bahga & Vijay Madisetti, 2014.
- 2. Bahaa E. A. Saleh and Malvin Carl Teich, "Fundamentals of photonics", 2012, 1st edition, John Wiley, New York.
- 3. Sergey Y. Yurish,"Digital Sensors and Sensor Systems: Practical Design", 2011, 1st ed., IFSA publishing, New York.
- 4. Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", 2009, 1 st ed., John Wiley & Sons, New Jersey.

Course Code	Course Name	Credits
ET 306	PCB Design and Electronics Equipment	04
	Troubleshooting	

Prerequisite:

Basic Circuit theory, Electromagnetics

Course Objectives:

- 1. Understanding of PCB design fundamentals
- 2. Ability to select the circuit, components and prepare layout
- 3. Ability to design PCB and perform drilling, component mounting, soldering, tinning, masking and testing.
- 4. Ability to design a PCB with SMD Components
- 5. Inculcate PCB design rules at high frequencies and to be aware of SMD components and packages.
- 6. To develop a skill set to work on real life projects and design

Course Outcomes:

- 1. Explain types of PCBs and basic procedure to design a PCB
- 2. Identify various tools and to become familiar with electronic components and their packages/footprints
- 3. Illustrate the use of PCB CAD tools and their features for practical designs and schematic preparation.
- 4. Fabricate PCB and become familiar with drilling, tinning, masking and soldering of components.
- 5. To compare PCB design at high frequency with low frequency
- 6. Fabricate PCBs for simple and advanced circuits and perform hardware testing to validate the design.

Theory Syllabus:

Sr.	Module	Detailed Content	Hours	CO
No.				Mapping
I	Fundamentals of PCB Design	Types of PCBs: General purpose, Single sided, Double Sided, Multi-layered PCBs. PCB materials, Introduction to layout Design, Rules for track (track length, width, size, joint and angle etc) PCB Design rules at radio frequency, Photolithography, Introduction to softwares like Eagle, Express-PCB, OrCAD, Ki-CAD, Altium, Proteus. Files and their extensions, Schematic/Layout editor, library editor, Text editor, preparation of	06	CO1, CO2
		Gerber/dxf/dwg/step/iges files, Short-cut keys and special commands, Forward and backward annotation, Electrical components and packages, Component libraries, footprint,		

		symbol, Plug ins, Routing, Assembling, Multi- layered PCB Design, Making of Schematic Symbol, Export, import and modify library components, Making of component footprints, Portability/compatibility of project files		
	PCB fabrication processes	Pre-PCB fabrication processes: Selection of circuit and components, Selection of PCB type, track printing, legend printing, Schematic preparation, Electronic rule checking (ERC) Post-PCB fabrication processes: Implementation of PCB: Etching, tinning, Masking (Green, Red, White, Black, Blue and Pink), Drilling, pads, vias, Component mounting, soldering, EMI-EMC issues, Hardware testing, Packaging / Enclosure Design	08	CO3, CO4
III	Advanced PCB Design	High frequency PCB design technology, Selection of SMD (Surface mounted devices) components packages / libraries and its mounting, Design Rules, Plated through hole technology	07	CO3, CO4
IV	Introduction to Troubleshooting	Troubleshooting Basics, Safety measures and Precaution during Troubleshooting, Common Troubleshooting Techniques, Test and Measuring instruments for troubleshooting, Measurement of A.C. voltage and D.C. voltage using multimeter for the given circuit, Continuity test of PCB track, wiring, switch etc., Inspection of solder joints, defects of soldered joints in given circuits.	05	CO5
V	Device Troubleshooting	Testing of Active and passive components separately or Mounted on PCB like: Resistor, Capacitors, Inductors, Switches, Relays, Transformers, Fuses, Connectors, Single/three phase MCBs, single phase ELCBs, RJ45 connector, Diodes, Transistors, FETs, MOSFET, SCR, DIAC,TRIAC, Displays (LCD or LED), Opto electronics components, Crystal oscillator, Fault diagnosis in op-amp circuits. Testing Various parameters of electronic active/passive components using a data book.	07	CO6
VI	Troubleshooting Digital Circuits	Logic IC families, Packages in Digital ICs, IC identification, IC pin-outs, Handling ICs, Digital troubleshooting methods – typical faults, testing digital ICs with pulse generators, Special consideration for fault diagnosis in digital circuits, Handling	06	CO6

precautions for ICs sensitive to static electricity, Testing flip-flops, counters, registers, multiplexers and demultiplexers, encoders and decoders; Tri-state logic. Testing	
Various parameters of digital IC using data book.	

Laboratory Syllabus:

	Level	Detailed Lab/Tutorial Description	Hours
Sr. No.	1.Basic 2.Design 3.Advanced Project/ Case Study/ Seminar		
1		Design of a Consuel Promose PCP for Posis Circuit	02
1	Design	Design of a General Purpose PCB for Basic Circuit	02
2	Design	Implementation of Single sided Glass epoxy PCB for an Electronic Circuit.	02
3	Design	Implementation of both sided Glass epoxy PCB for an Electronic Circuit.	02
4	Design	Implementation of multi-layered PCBs for an Electronic Circuit.	02
5	Advanced	Implementation of PCB with SMD Components	02
6	Advanced	Implementation of Both sided PCB Using PTH (Design of SIW)	02
7	Basic Design	Mini-Project -1	02
8	Advanced Design	Mini-Project -2	02

Software Requirements: EAGL/Ki-CAD/ ORCAD/Express-PCB/Altium/Proetis/ Hardware Requirements: PCB Board, PCB Lab setup, SMD and PTH Setup.

Theory Assessment:

Internal Assessment for 40 marks:

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Laboratory Assessment:

Term work Assessment: Term work should consist of 10 experiments. Journal must include at least 2 assignments on content of theory and practical of "Java Programming". The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work. Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments: 05-marks)

Oral/Viva Assessment: Practical & oral exam to be conducted by Internal & External examiners. Practical execution (10 marks) & Oral (15 marks).

Text Books:

- 1. Simon Monk, Make your own PCBs with EAGLE: From Schematic Designs to Finished Boards, 1st Edition, McGraw Hill Education.
- 2. P. Horowitz and W. Hill, The Art of Electronics, 3rd Edition, Cambridge University Press.
- 3. Henry W. Ott, "Electromagnetic Compatibility Engineering", A John Wiley and Sons, Inc. Publication.
- 4. Matthew Scarpino, Designing Circuit Boards with EAGLE: Make High Quality PCBs at Low Cost, 1st Edition, Prentice Hall.Archambeault and Drewniak James, PCB Design for Real World EMI Control, Springer Publication

Course Code	Course Name	Credits
ET 307	Basics of VLSI Design	04

- 1. Introduce the fundamental concepts of MOSFET device physics
- 2. Develop an understanding of MOS-based inverter design
- 3. Enable students to design and analyze combinational logic circuits using MOSFETs
- 4. Familiarize students with different MOS circuit design styles and teach their application in the realization of sequential logic circuits
- 5. To study semiconductor memories using MOS logic
- 6. To study adder, multiplier and shifter circuits for realizing data path design

Course Outcomes: Upon successful completion of the course students will be able to

- 1. Describe the principles of MOSFET operation and analyze the impact of scaling on device characteristics.
- 2. Design and analyze MOS based inverters.
- 3. Design and analyze MOSFET based combinational logic circuits
- 4. Analyze various MOS circuit design styles and apply them for realization of Sequential Circuits
- 5. Explain principle of working of semiconductor memories
- 6. Design adder, multiplier and shifter circuits using MOS logic

Prerequisite: Analog Electronics Circuits, Digital Circuits and System Design (DCSD)

DETAILED THEORY SYLLABUS:

Sr.	Module	Detailed Content	Hours	
No.				
1	Review of	Threshold Voltage Equation, MOSFET Structure and Operation,	05	
	MOSFET	Current-Voltage Characteristics and MOSFET Capacitances		
	Physics	MOSFET Scaling, Types of scaling and Small geometry effects		
2	MOSFET	Circuit Analysis: Static and dynamic analysis (Noise,	08	
	Inverters	propagation delay and power dissipation) of resistive load, E		
	. 5	mode MOSFET load, D mode MOSFET load inverter and		
		CMOS inverter, comparison of all types of MOS inverters,		
	design of CMOS inverters			
	Y	Various components of power dissipation in CMOS circuits		
3	Combinational	ombinational Logic Circuit Design: Analysis and design of 2-I/P NAND and		
	MOS Logic	NOR using equivalent CMOS inverter, W/L ratio, Complex		
	Circuits	circuits		
4	MOS Circuit	Design Styles: Static CMOS, pass transistor logic, transmission	08	
	Design Styles	gate, Pseudo NMOS, Domino, NORA, Zipper, C ² MOS, sizing		
	-	and Sequential using logical effort		
	Circuit	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift		
	Realization	Register, MUX, decoder using above design styles		

5	Semiconductor	SRAM: ROM Array, 6T SRAM (operation, design strategy,	06
	Memories	leakage currents, read/write circuits, sense amplifier), 1T DRAM	
		(Operation, leakage currents, refresh operation), Flash memory-	
		NOR Flash, NAND flash.	
6	Data Path	Adder: CLA adder, Manchester carry chain	06
	Design	High-speed adders: carry skip, carry select and carry save	
		Multipliers and shifter: Array multiplier and barrel shifter	

DETAILED LAB SYLLABUS:

Software Requirements: TINA, NGSpice, Microwind

Sr.	Detailed Lab Description		
No.			
1	Effect of parasitic capacitance and threshold voltage on output of NMOS inverter with		
	resistive load.		
2	Circuit characteristics and performance estimation of NMOS inverter with resistive		
	load.		
	1) Verification of V _{OH} level for different values of load resistance.		
	2) Find rise time for different values of load resistance.		
3	Circuit characteristics and performance estimation of NMOS inverter with Enhancement		
	mode MOSFET load.		
4	Circuit characteristics and performance estimation of NMOS inverter with Depletion mode N		
	channel MOSFET as a load.		
5	Circuit characteristics and performance estimation of CMOS inverter.		
	1) Verification of V _{OH} and V _{OL} levels.		
	2) Comparison of rise and fall times for different values of W/L ratio of pull up and pull		
	down devices.		
6	Circuit characteristics and performance estimation of CMOS Dynamic 2 Input NAND		
	Gate.		
	1) Verification of V _{OH} and V _{OL} levels for various input possibilities.		
	2) Verification of precharge and evaluate condition for different inputs.		
	3) Verification of charge leakage problem.		
7	Design of 4:1 MUX using pass transistor logic and transmission gates.		
8	Design of 6T SRAM using Microwind dsch3.1.		

Theory Assessments:

Internal Assessment: Two Internal assessments will be conducted for 40 marks each with average marks of both assessments as final score.

End Sem Theory Examination:

- Question paper will consist of 4 questions, each carrying 20 marks.
- Total 3 questions need to be solved.
- Q.1 will be compulsory, based on the entire syllabus.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

Lab Assessments:

- Term work should consist of 8 experiments.
- Journal must include at least 3 assignments.

1. Term work Assessment:

Total 25 Marks (Experiments: 10-marks, Assignments: 10-marks, Attendance Theory & Practical: 05-marks)

2. Oral/Viva Assessment:

Based on the above contents and entire syllabus.

Text Books:

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.
- 2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2nd Edition.

References:

- 1. Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.
- 2. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.
- 3. Debaprasad Das, "VLSI Design", Oxford, 1st Edition.

Course Code	Course Name	Credits
ET 308	Data Processing and Coding	04

Prerequisite:

Electronics Communication System Digital Communication

Course Objectives:

To teach the students

- 1. Lossy & Lossless compression techniques for Text.
- 2. Compression techniques for Audio signals.
- 3. Lossy & Lossless compression techniques for Image & Video.
- 4. Goals and design principles for cryptography and common structures of secret key primitives such as block and stream ciphers and message authentication codes.
- 5. Basic key management techniques in both secret key and public key cryptography.
- 6. Network and Web Security.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Define compression; understand compression as an example of representation
- 2. Implement text, audio and video compression techniques.
- 3. Translate the most common file formats for image, sound and video.
- 4. Understand basic principles of cryptography and general cryptanalysis & be acquainted with the concepts of symmetric encryption and authentication.
- 5. Compare & Contrast Symmetric and Asymmetric Key Cryptography schemes.
- 6. Compose, build and analyze simple cryptographic solutions

Theory Syllabus

Sr. No.	Module	Detailed Content	Hours	CO Mapping
I	Text Compression	 Introduction to Information theory: Entropy, Information Value, Data Redundancy. Statistical Methods: Shannon-Fano Algorithm, Huffman Algorithm, Adaptive Huffman Coding. Statistical Methods: Arithmetic Coding (Encoding, Decoding, Adaptive Coding). Dictionary Methods: LZ77, LZ78, LZW Algorithms. 	8	CO1,CO2
II		Sound, Digital Audio, μ-Law and A-Law Companding, MPEG – ½ Audio Layer (MP3 Audio Format)	5	CO2,CO3
III	Image & Video Compression	 Image Compression: Discrete Cosine Transform, JPEG. Differential Lossless Compression, DPCM Wavelet Methods: Discrete Wavelet Transform, JPEG 2000. 	5	CO2,CO3

		4. Video Compression: Analog Video, Digital Video, Motion Compensation, Temporal and		
		Spatial Prediction. MPEG and H.264.		
IV	Data Security	1. Security Goals, Cryptographic Attacks, Techniques	8	CO4
		2. Symmetric Key: Substitution Cipher,		
		Transposition Cipher, Stream and Block		
		Cipher		
		3. DES, AES		
V	Number	1. Primes, factorization, Fermat's little	8	CO5
	Theory and	theorem, Euler's theorem, and extended	/	
	Asymmetric	Euclidean algorithm		
	Key	2. RSA, attacks on RSA, Diffie Hellman key		
	Cryptography	exchange, key management, and basics of	(
		elliptical curve cryptography		
		3. Message integrity, message authentication,		
		MAC, hash function, H MAC, and digital		
		signature algorithm.		
VI	System	Malware, Intruders, Intrusion detection	5	CO6
	Security	system, firewall design, antivirus techniques,		
		digital Immune systems, biometric		
		authentication, and ethical hacking.		

Lab Syllabus

Lab Prerequisite: Knowledge of MATLAB/SCILAB

Sr. No.	Level 1. Basic 2. Design 3. Advanced 4. Project/ Case Study/ Seminar	Detailed Lab/Tutorial Description	Hours
1	2	To implement Huffman Coding	02
2	2	To implement Arithmetic coding	02
3	2	To implement LZ77/78 Coding	02
4	2	To implement LZW Coding	02
5	3	To implement one dimension & two-dimensional DCT	02
6	2	To implement Chinese Remainder Theorem	02
7	2	To implement Caesar Cipher Algorithm	02
8	2	To implement Transposition cipher	02
9	3	To implement Diffie Hellman key exchange Algorithm	02
10	3	To implement RSA algorithm	02

Software Requirements: MATLAB/SCILAB

Hardware Requirements: NIL

Theory Assessment:

Internal Assessment for 40 marks:

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Laboratory Assessment:

Term Work: 25 Marks

End Semester Practical/Oral Examination 25 marks:

Text Books:

- 1. Mark Nelson, Jean-Loup Gailly, The Data Compression Book, 2nd edition, BPB Publications
- 2. Khalid Sayood, Introduction to Data Compression, 2nd Edition Morgan Kaufmann.
- 3. William Stallings, —Cryptography and Network Security Principles and Practices 5th
- 4. Edition, Pearson Education.
- 5. Behrouz A. Forouzan, —Cryptography and Network Security, Tata McGraw-Hill.

References:

- 1. David Salomon, —Data Compression: The Complete Reference, Springer.
- 2. Matt Bishop, —Computer Security Art and Science, Addison-Wesley.

Course Code	Course Name	Credits
ET 309	TV & Video Engineering	04

Prerequisite:

Electronic Communication System

Course Objectives:

- 1. To understand basic concepts of TV system
- 2. To learn the importance of the digitization in Television Engineering
- 3. To become well conversant with new development in video engineering.
- 4. To understand compression techniques
- 5. To introduce to advanced systems and dvb standards
- 6. Describe the modern display devices like.

Course Outcomes:

- 1. Understand overview of TV system.
- 2. Able to understand NTSC and PAL Television system and concept of Colour theory in Colour TV.
- 3. Able to recollect digitization in television and compression technique.
- 4. Understand details of Know about different dvb standards.
- 5. Understand advanced digital systems
- 6. Understand various display device

Theory Syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
I	Fundamentals of TV system	1.1 Elements of TV system, Transmitter and receiver- block diagram approach, interlaced scanning, composite video signal, VSB transmission and reception 1.2 Camera Tubes: Vidicon, Image Orthicon	8	CO1
II	Colour TV Standards	2.1 Colour fundamentals, mixing of colors, color perception, chromaticity diagram, Color TV systems 2.2 NTSC, PAL systems, colour TV transmitter, colour TV receivers.	8	CO2
ΥŰ	Fundamental Concept of Digital Video	3.1 Introduction to Digital TV, Principle of Digital TV, Digital TV signals and parameters (Digitization, pixel array, scanning notation, viewing distance and angle, aspect ratio, frame rate and refresh rate.) 3.2 Chroma subsampling: 4:4:4,4:2:2,4:2:0,4:1:1 digital video formats	10	CO3

		3.3 Video compression standards: MPEG2:DCT coding, codec structure. Introduction to H.264/MPEG-4 AVC, Introduction to H.265 Direct-to-home TV(DTH)		
IV	Digital Video Broadcasting	4.1 Introduction to DVB-T,DVB-T2,DVB-H,DVB-S,DVB- C	6	CO4
V	Advanced Digital TV Systems	5.1 MAC signal, D2-MAC/packet signal, MAC decoding and interfacing, advantages of MAC signal, HDTV, MUSE, Smart TV and its functions IP Audio and Video, IPTV systems, Mobile TV, Video transmission in 3G mobile System, Digital	10	CO5
VI	Displays Device	6.1 LCD,LED 6.2 Chromecast	A	CO6

Laboratory Syllabus:

Sr. No.	Level 1. Basic 2. Design 3. Advanced 4. Project/ Case Study/ Seminar	Detailed Lab/Tutorial Description	Hours
1	Basic	To acquire the knowledge of the RF section and IF section of the TV trainer kit and test faults in both sections.	02
2	Basic	To test various faults in the Horizontal & Vertical Oscillator section of the TV trainer kit.	02
3	Basic	To understand and test faults in the Video and Chroma section of TV trainer kits.	02
4	Basic	Study block diagram and functioning of different sections of wi-fi/ Smart LED Television	02
5	Design	Develop an algorithm to compress the image/video using morden compression methods.	02
6	Advanced	To Study the function of front panel control keys and remote control keys of smart LED TV.	02
7	Advanced	Study and measure voltage of the power supply section.	02
8	Advanced	To understand the LED interface section.	02
9	Advanced	To acquire the knowledge of direct to home television system	02
10	Advanced	To study various waveform and important voltages level in DTH system	02

Theory Assessment:

Internal Assessment for 40 marks:

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Lab Assessments:

- 1. **Termwork Assessment:** At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the **Laboratory session batch wise**". Computation/simulation based experiments are also encouraged. The experiments should be student centric and attempt to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorial and mini-projects (if included) are graded from time to time.
- 2. **Oral/Viva Assessment:** The practical and oral examination will be based on the entire syllabus.

Text Books:

- 1. Television and video Engineering, A. M. Dhake, Tata McGraw Hill Publication
- 2. Monochrome and colour Television by R.R.Gulati
- 3. R.G.Gupta, "Television and Video Engineering", Tata Mc Graw Hill publication.
- 4. Dhake A.M, "Television and Video Engineering", Tata McGraw Hill publication.
- 5. Keith Jack, "Video Demystified", 4e, Elsevier

References:

- 1. Charles Poynton, "San Francisco, Digital video and HDTV, Algorithms And Interfaces," Morgan Kaufmann publishers, 2003.
 - 2. Digital Television (Practical guide for Engineers) by Fischer

Course Code	Course Code Course Name	
ET 310	Computer Communication & Network	04

- 1. To develop an understanding of computer networking basics.
- 2. Describe how computer networks are organized with the concept of layered approach.
- 3. Analyze the contents in a given data link layer packet, based on the layer concept.
- 4. Describe what a classless addressing scheme is? Design logical sub-address blocks with a given address block.
- 5. Describe how routing protocols, transport layer and application layer protocols work.

Course Outcomes: Six (Based on Bloom's Taxonomy)

- 1. Demonstrate the concepts of data communication at the physical layer and compare ISO OSI model with TCP/IP model.
- 2. Demonstrate the knowledge of networking protocols at the data link layer.
- 3. Design the network using IP addressing and subnetting / supernetting schemes.
- 4. Analyze various routing algorithms and protocols at the network layer.
- 5. Analyze transport layer protocols and application layer protocols.
- 6. Develop knowledge and skills necessary to gain employment as computer network engineer and network administrator.

Prerequisite: Basic knowledge of Computer Theory

Syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
	Introduction to Computer Network and Physical Layer Specifications	Overview of OSI Model, of TCP/IP Protocol Suite, Applications of Computer Networks, Software Primitives, Transmission Media, Network devices, Switching, Physical Layer Coding	6	CO1
II	Framing and Channel Allocation, Error Control	Bits stuffing, Byte Stuffing, Character Coding, HDLC, PPP, CRC, Checksum, Hamming Code, Overview ARQ, Dynamic Channel Allocation(CSMA/CD, CSMA/CA)	7	CO2
III	IP addressing (IP v4, IPv6)	Classful, classless addressing, Subnetting, IPV4, IPV6, Migration from IPv4 to IPV6	6	CO3,CO6
IV	_ · · · · · · · · · · · · · · · · · · ·	Types of Routing, Routing Algorithm: Distances Vector Routing, Link state Routing Path vector Routing,	5	CO4,C06
V	TCP and UDP services, Socket Programming	TCP header, 3-way connection Establishment, TCP services: Error Control, Flow control, Congestion Control, TCP state transition diagram, TCP timers, UDP header, Socket Programing, Client Server programing	8	CO5,CO6

VI	HTTP, FTP,	Application Layer Services, HTTP, FTP,	7	CO5,CO6
	Mailing Protocols,	TFTP, SNMP, POP3, IMAP4,DNS, DHCP		
	DNS, DHCP,			

Laboratory Syllabus:

Labor	atory Synabus.		
Sr. No.	Level 1. Basic 2. Design 3. Advanced 4. Project/ Case Study/ Seminar	Detailed Lab/Tutorial Description	Hours
1	Basic	To perform crimping and set up a LAN connection.	02
2	Design	To configure a network using Distance Vector Routing Protocol-RIP using Cisco Packet Tracer.	02
3	Design	Configure a network using Path Vector Routing Protocol- BGP using Cisco Packet Tracer	02
4	Advanced	To perform subnetting using Cisco Packet Tracer	02
5	Advanced	To configure the DHCP server.	02
6	Basic	To study about the NS2 simulator in detail.	02
7	Advanced	To Simulate and to study stop and Wait protocol using NS 2.1	02
8	Advanced	To Simulate Sliding Window protocol using NS 2.1	02
9	Project	Mini Project	02

Software Requirements: Cisco Packet Tracer, NS2

Hardware Requirements: Network Devices: Routers, Switches, Crimping Tool

Theory Assessment:

Internal Assessment for 40 marks:

Consisting of Two Compulsory Internal assessment of **40 Marks each** on 40% syllabus for each test. The final marks will be the average of the score of both the tests.

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Lab Assessments:

- 1. Termwork Assessment: At least 08 Experiments including 02 simulations covering the entire syllabus must be given during the —Laboratory session batch wise". The experiments should be student centric and attempts should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for a maximum batch of four students. Term work assessment must be based on the overall performance of the student with every experiment/tutorials and mini-projects (if included) are graded from time to time. Based on the above scheme grading and term work assessment should be done.
- 2. Oral/Viva Assessment: The practical and oral examination will be based on the entire syllabus.

Textbooks:

- 1. Computer Networks, Fifth Edition, Andrew S. Tanenbaum.
- 2. TCP/IP Protocol Suite, Tata McGraw Hill, Behrouz A. Forouzan

References:

- 1. DATA AND COMPUTER COMMUNICATIONS Eighth Edition William Stallings
- 2. Computer Networking: A Top-Down Approach, 6th Edition. James Kurose. Keith W. Ross

Course Code	Course Name	Credits
ET 311	Database Management System	04

Prerequisite: C Programming, Python Programming

Course Objectives:

- 1. Understand the requirement of Database Management System
- 2. Develop entity relationship data model and its mapping to relational model
- 3. Learn relational algebra and Formulate basic SQL queries
- 4. Formulate Advance complex SQL queries
- 5. Apply normalization techniques to normalize the database
- 6. Understand the concept of transaction, concurrency control and recovery techniques

Course Outcomes:

- 1. Recognize the need of database management system and understanding Data Models
- 2. Design ER and EER diagrams for real life applications and Construct relational models for the same.
- 3. Formulate SQL queries and design Database.
- 4. Analyze Database using complex SQL queries
- 5. Apply the concept of normalization to relational database design.
- 6. Describe the concept of transaction, concurrency and recovery.

Theory Syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
I	Introduction to DBMS	Characteristics of database, Database users, Advantages of DBMS, Data Models, Schemas and Instances, DBMS system Architecture, Three schema Architecture and Data Independence, Data abstraction	4	CO1
II	Entity— Relationship Data Model and Relational Model	The Entity-Relationship (ER) Model: Entity types: Weak and strong entity sets, Entity sets, Types of Attributes, Relationship constraints: Cardinality and Participation, Design of an E-R database schema; Extended E- R features; Introduction to the Relational Model, relational schema and concept of keys. Reduction of an E-R schema to EER schema; Reduction of an E-R schema to tables.	6	CO2
IH	Structured Query Language (SQL)	Overview of SQL, Data Definition Commands, Basic SELECT Queries, SELECT Statement Options, FROM Clause Options, Integrity constraints: key constraints, Domain Constraints, Referential integrity, check constraints, Data Manipulation commands, Data Control commands	7	CO3

IV	Advanced SQL	Nested and Complex Query, SQL with SET operations: Union, Intersect, Except, etc, Aggregate Functions, Group By, Having, SQL with Logical operations, Join Queries, Virtual Tables: Creating a View, Sequences, Procedural SQL, Embedded SQL Database Design: The Information System, The Systems Development Life Cycle, The Database Life Cycle, Conceptual Design, DBMS Software Selection, Logical Design, Physical Design, Database Design Strategies, Centralized versus Decentralized Design.	10	CO4
V	Relational- Database Design	Pitfalls in relational-database design, Concept of normalization, Function Dependencies, First Normal Form, 2NF, 3NF, BCNF, 4NF	6	CO5
VI	Transactions Management and Concurrency and Recovery	Transaction concept, Transaction states, ACID properties, Transaction Control Commands, Concurrent Executions, Serializability-Conflict and View, Concurrency Control: Lock-based, Timestamp-based protocols, Recovery System: Log based recovery, Deadlock handling	6	CO6

Laboratory Syllabus:

Lab Prerequisite: C Programming, Python Programming

Sr.	Level	Detailed Lab/Tutorial Description	Hours
No.	1.Basic		
	2.Design	y	
	3.Advance 4.Project/ Case		
	Study/ Seminar		
1	1	Identify the case study and detailed statement of the problem.	02
2	2	Design an Entity-Relationship(ER)/ Extended	02
		Entity-Relationship (EER) Model.	
3	2	Mapping of ER Diagram to Relational Schema Model	02
4	3	Create a database using Data Definition Language (DDL) and	02
	5	apply integrity constraints for the specified System.	
5	3	Apply DML commands for the specified system.	02
6	3	Perform Merge Operation	02
7	3	Perform Aggregation Function and Clauses in SQL	02
8	3	Perform Join Operation	02
9	3	Perform Trigger Function and view in Postgresql	02

10	4	Analysis of any Database / case study	02
11	4	Application of the knowledge on mini project	02

Software Requirements: SQL server (Oracle/MySQL/PostGreSQL)

Hardware Requirements: 2GB RA

Theory Assessment:

Internal Assessment for 40 marks:

- 1. Consisting of One Compulsory Internal assessment of 40 Marks
- 2. Continuous evaluation: Test/Assignments/Quiz/Case studies/project/Seminar presentation of 40 Marks

End Semester Examination: 60 Marks

Weightage of each module in the end semester examination will be proportional to the number of respective lecture hours mentioned in the curriculum.

Lab Assessments:

- **1. Teamwork Assessment:** Term work should consist of 10 experiments. Journal must include at least 2 assignments on content theory and practical of "Database Management System". The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments:05-marks).
- **2. Oral/Viva Assessment:** Practical & oral exam to be conducted by Internal & External examiners. Practical execution (10 marks) & Oral (15 marks).

Text Books:

- 1. Elmasri & Navathe, "Fundamentals of Database System", 7 th Edition, Addison Wesley Publication.(2015).
- 2. Abraham Silberschatz, Henry Korth, Sudarshan, "Database System Concepts", 6th Edition, (2010)
- 3. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, 3rdEdition, McGraw-Hill, (2002)

References:

1. Michael Mannino, "Database design, Application Development and Administration", 4th Edn(2008)

Peter Rob and Coronel, "Database systems, Design, Implementation and Management", 5th Edition, Thomson Learning, 2001

3. C. J. Date, "Introduction To Database Systems", Seventh Edition, Addison Wesley

Text Books (For Laboratory)

- 1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6thEdition, McGraw Hill.
- 2. Elmasri and Navathe, Fundamentals of Database Systems, 5thEdition, Pearson Education.
- 3. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.

References (For Laboratory)

- 1. Microsoft SQL Server Black Book By Patrick Dalton
- Anniesion Lear 2023. A 2. https://www.w3schools.com/sql/

Course Code	Course Name	Credits
ET 391	Mini Project III	01

- 1. To make students familiar with the basics of circuit elements, microcontroller and peripherals
- 2. To simulate the project design using computer software
- 3. To make students aware of the components, peripherals available in the market and conduct market survey.
- 4. To implement the simulated project on bread board
- 5. To make students understand different steps in designing of PCB, mounting of components, soldering of components.
- 6. To develop PCB for the designed project and perform trouble shooting

Course Outcomes: After successful completion of the course, the student will be able to

- 1. Understand with the basics of circuit elements, microcontroller and peripherals
- 2. Simulate the project design using computer software
- 3. Understand the components, peripherals available in the market and conduct market survey.
- 4. Understand the implementation of project on bread board
- 5. Understand different steps in designing of PCB, mounting of components, soldering of components.
- 6. Understand development of PCB for the designed project and perform trouble shooting

Course Contents:

Guidelines for mini project

Mini Project should be completely microcontroller based.

A: Execution of Project:

Project group shall consist of not more than 4 students per group. Project Work should be carried out in the Design / Projects Laboratory.

Project designs ideas can be necessarily adapted from recent issues of electronic design Use of Hardware devices/components is mandatory.

Layout versus schematic verification is mandatory Assembly of

components and enclosure design is mandatory.

Students shall be motivated to publish a paper based on the work in Conferences / students competitions.

B: Selection of Project:

The Project may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on learning additional skills.

C: Weekly Interaction of project team and project guide:

Week 1 & 2: Formation of groups, Finalization of Mini project & Distribution of work.

Week 3 & 4: PCB artwork design using an appropriate EDA tool, Simulation.

Week 5 to 8: PCB manufacturing through vendor/at lab, Hardware assembly, programming (if required) Testing, Enclosure Design, Fabrication etc

Week 9 & 10: Testing of final product, Preparation, Checking & Correcting of the Draft Copy of Report Week 11 & 12: Demonstration and Group presentations.

Log book for all these activities shall be maintained and shall be produced at the time of examination.

D. Report writing: A project report with following contents shall be prepared:

Title Specifications Block diagram Circuit diagram Selection of components Calculations Simulation results

PCB artwork Layout versus schematic verification report testing procedures

Enclosure design Test results Conclusion

Module No	Detailed Content	CO Mapping
I	Understand with the basics of circuit elements, microcontroller and peripherals	COI
II	Simulate the project design using computer software	CO2
III	Understand the components, peripherals available in the Market and conduct market survey.	CO3
IV	Understand the implementation of project on bread board	CO4
V	Understand different steps in designing of PCB, mounting of components, soldering of components.	CO5
VI	Understand development of PCB for the designed project and perform trouble shooting	CO6

Guidelines for Assessment of Mini Project:

Term Work (25 Marks):- On demonstration in front of an internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed. The review/ progress monitoring committee shall be constituted by the head of departments of each.

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
IL 360	IPR and Patenting	Contact Hours	3	-	-	3
	_	Credits	3	-	-	3

		Examination Scheme							
Сописо	Course Name	Theory Marks							N
Course Code		Internal Assessment			End	Term	Practical	Oral	Total
Code		IA 1	IA 2	Average	Sem Exam	Work	Tractical	Oral	lotai
IL 360	IPR and Patenting	40	40	40	60	-	-	4	100

- 1. To introduce fundamental aspects of Intellectual property Rights to learner who are going to play a major role in development and management of innovative projects in industries.
- 2. To get acquaintance with Patent search, patent filing and copyright filing procedure and applications, and can make career as a patent or copyright attorney.
- 3. To make aware about current trends in IPR and Govt. steps in fostering IPR,

Course Outcomes: Learner will be able to...

- 1. Understand the importance of IPR, types of Patent type and its importance in industries.
- 2. Able to search, draft and file the patent and copyright application to patent office.
- 3. Learn the recent trends of IPR and can open the way for the students to catch up Intellectual Property (IP) as a career option:
 - a) R&D IP Counsel in research organization
 - b) Government Jobs Patent Examiner
 - c) Private Jobs
 - d) Patent agent and Trademark agent.

Ī	Module	Detail Content	Hrs.						
Ì	1	Overview of Intellectual Property: Introduction and the need for intellectual	9						
		property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright							
		Trade Mark, Design, Geographical Indication, Plant Varieties and Layout							
		Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR							
		in India: Genesis and development – IPR in abroad - Major International							
		Instruments concerning Intellectual Property Rights: Paris Convention, 1883,							
	27	the Berne Convention, 1886, the Universal Copyright Convention, 1952, the							
		WIPO Convention, 1967, the Patent Cooperation Treaty, 1970, the TRIPS							
		Agreement, 1994							
	2	Patents: Patents - Elements of Patentability: Novelty, Non-Obviousness	7						
		(Inventive Steps), Industrial Application - Non - Patentable Subject Matter -							
		Registration Procedure, Rights and Duties of Patentee, Assignment and							
		license, Restoration of lapsed Patents, Surrender and Revocation of Patents,							
		Infringement, Remedies & Penalties - Patent office and Appellate Board							
	3	Copyright: Nature of Copyright - Subject matter of copyright: original	6						
		literary, dramatic, musical, artistic works; cinematograph films and sound							
		recordings - Registration Procedure, Term of protection, Ownership of							

	copyright, Assignment and license of copyright - Infringement, Remedies &	
	Penalties – Related Rights - Distinction between related rights and copyrights	
4	Trademark: Concept of Trademarks - Different kinds of marks (brand names,	6
	logos, signatures, symbols, well known marks, certification marks and service	
	marks) - Non-Registrable Trademarks - Registration of Trademarks - Rights	
	of holder and assignment and licensing of marks - Infringement, Remedies &	
	Penalties - Trademark's registry and appellate board.	
5	Patent Acts: Section 21 of the Indian Patent Act, 1970 (and corresponding	9
	Rules and Forms) with specific focus on Definitions, Criteria of Patentability,	
	Non-Patentable Subject Matters, Types of Applications, and Powers of	
	Controllers. Section 25 - Section 66 of the Indian Patent Act, 1970 with	
	specific focus on the Oppositions, Anticipation, Provisions of Secrecy,	"
	Revocations, Patent of Addition, and Restoration of Patents.	
	Section 67 - Section 115 of the Indian Patent Act, 1970 with specific focus on	
	Patent Assignments, Compulsory Licensing, Power of Central Government,	
	and Infringement Proceedings. Section 116 - Section 162 of the Indian Patent	
	Act, 1970 with specific focus on Convention/PCT Applications, Functions of	
	Appellate Board and other Provisions. Amendment Rules 2016 with emphasis	
	on important revisions to examination and Hearing procedures; provisions for	
	start-ups and fees.	
6	Indian IP Policy: India's New National IP Policy, 2016 – Govt. of India step	3
	towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP	
	– IPR.	

Assessment:

Internal Assessment: 40 marks End Semester Examination: 60 Marks

Books/References:

- 1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.
- 2. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.
- 3. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.
- 4. World Intellectual Property Organisation. (2004). WIPO Intellectual property Handbook. Retrieved from https://www.wipo.int/edocs/pubdocs/en/intproperty/489/wipo_pub_489.pdf

Course Code	Course Name	Scheme	Theory	Practical	Tutoria l	Total
IL 361	E-Commerce and E-	Contact Hours	3	-	-	3
	Business	Credits	3	-	-	3

		Examination Scheme							
Course	Course Name	Theory Marks				Term			
Code		Internal Assessment			End	Wor	Practical /	-Oral	Tota
Code		IA 1	IA 2	Average	Sem Exam	k	Tractical	Glai	l
IL 361	E-Commerce and E-Business	40	40	40	60	-	-		100

- 1. To understand the factors needed in order to be a successful in ecommerce
- 2. Identify advantages and disadvantages of technology choices such as merchant server software and electronic payment options.
- 3. Analyse features of existing e-commerce businesses, and propose future directions or innovations for specific businesses.

Course Outcomes: Learner will be able to

- 1. Appreciate the global nature and issues of electronic commerce as well as understand the rapid technological changes taking place.
- 2. Define and differentiate various types of E-commerce
- 3. Discuss various E-business Strategies

Module	Detail Content	Hrs.
1	E-commerce system: Introduction- scope of electronics commerce, definition of e-commerce, difference between e-commerce and e-business, business models of e-commerce transactions. E-commerce infrastructure: client server technology, two tier client server architecture for e-commerce, drawbacks, three tier architecture for e-commerce.	8
2	Business strategies for e-commerce: Introduction- elements of e-commerce strategy, simplicity, mobile responsiveness, choosing e-commerce store platform, user-based focus, compliance and security measures, e-commerce strategy: strategy overview, strategy task, technology issues. Case study: Flipkart v/s Amazon, competitive edge, marketing strategy, sales strategy	8
	Design of E-commerce systems: e-commerce types- electronic market, electronics data interchange EDI, modeling of e-commerce system, three tier component model of e-commerce system, e-commerce system design- data model, web modeling, database structure design, process model, user friendly design of e-commerce site.	7
4	Technologies for e-commerce systems: Introduction- technologies for e-commerce, PHS and Java script, SEO, Social Plugins, payment processes, SSL Encryption, hosting server, Service oriented architecture.	7
5	Scalability of e-commerce systems: Web scalability- Vertical scalability , horizontal scalability, Load balancing- working of load balancers, global server load balancers, cloud load balancing- goals of cloud balancing, automated cloud balancing. web caching and buffering	6

E-commerce system implementation: E-commerce implementation, -	
website testing, web maintenance, web advertisement, copyright services,	
SMS alert services, bulk email services, Web personalization- techniques for	6
gathering information, analysis techniques for website personalization,	O
domain name registration and web hosting- different types of web hosting,	
different components of web hosting, features in web hosting.	

Assessment:

Internal Assessment: 40 marks

6

End Semester Examination: 60 Marks

Reference Books:

1. Electronic Business and Electronic Commerce Management, 2nd edition, Dave Chaffey, Prentice Hall,

2. Elias. M. Awad, "Electronic Commerce", Prentice-Hall of India Pvt Ltd.

3. E-Commerce Strategies, Technology and applications (David Whitley) Tata McGrawHill

 E-business- theory and practise, Brahm Canzer, cengage learning
 Secure e-commerce systems (Kindle edition), Amazon publishing, P.S. Lokhande, B.B. Meshram, first edition

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
IL 362	Introduction to	Contact Hours	3	-	-	3
	Bioengineering	Credits	3	-	-	3

		Examination Scheme							
Course	Course Name	Theory Marks Internal Assessment End						JV	
Code					End	Term	Practical	Oral	Tota
Couc		IA 1	IA 2	Average	Sem Exam	Work	Tractical	Oral	
IL 362	Introduction to Bioengineerin g	40	40	40	60	-	2		100

- 1. Understand the fundamental concepts and historical development of biomechanics and its role in biomedical engineering.
- 2. Gain knowledge of biomedical instrumentation and medical imaging techniques used in diagnosis and treatment.
- 3. Study the properties of biomaterials and the design and classification of implants in relation to human anatomy.
- 4. Apply advanced engineering principles to solve biomedical problems through practical case studies.

Course Outcomes: Learner will be able to

- 1. Explain the definition, scope, and historical evolution of biomechanics and its significance in medical applications.
- 2. Identify and describe the operation and clinical applications of key biomedical instruments used in diagnostics and therapy.
- 3. Demonstrate understanding of medical imaging modalities and interpret basic imaging data for clinical relevance.
- 4. Characterize biomaterials based on their anatomical origin and physical properties relevant to biomedical applications.
- 5. Classify various types of implants and evaluate their interactions with human tissues for implant design considerations.
- 6. Apply engineering principles and case study insights to design solutions for biomedical engineering challenges.

Module	Detail Content	Hrs.
1	Introduction: Definition of Biomechanics, Selected Historical highlights,	6
/	The Italian Renaissance, Gait century, Engineering Physiology & Anatomy	
2	Biomedical Instrumentation: Patient monitoring system, Arrythmia and	8
	ambulatory monitoring instrumentation, cardiac pacemakers, cardiac	
	defibrillators, physiotherapy and electrotherapy equipment, ventilators	
3	Medical Image Processing: Introduction to X-rays based imaging systems,	7
	Magnetic Resonance Imaging (MRI), Positron Emission Tomography	
	(PET), Single-Photon Emission Computerized Tomography (SPECT) scan,	
	Computed Tomography (CT) scan and Ultrasound (sonography)	

4	Biomaterials: Brief Anatomy, Bone, cartilage, ligament, tendon, Muscles,	6
	biofluid their physical properties	
5	Implants: General concepts of Implants, classification of implants, Soft	6
	tissues	
6	Application of advanced engineering techniques to the human body, case	6
	studies.	

Assessment:

Internal Assessment: 40 marks

End Semester Examination: 60 Marks

Books/References:

- 1. Nigg, B.M.and Herzog, W., "BIOMECHANICS of Musculo skeleton system", John Willey & Sons, 1st Edition.
- 2. Saltzman, W.L., "BIOMEDICAL ENGINEERING: Bridging medicine and Technology", Cambridge Text, First Edition.
- 3. Winter, D., "BIOMECHANICS and Motor Control of Human Movement", WILEY Interscience Second edition
- 4. "Biomedical Instrumentation and Measurements" by Leslie Cromwell, Fred J. Weibell, and Erich A. Pfeiffer
- 5. W. Birkfellner, Applied Medical Image Processing: A Basic Course, CRC Press , Second Edition, 2014
- 6. Prof. Ghista, Biomechanics, Private Publication UAF, 2009
- 7. White &Puyator, Biomechanics, Private publication UAE, 2010
- 8. R. M. Kennedy, A textbook of Biomedical Engineering, GTU, 2010
- 9. Richard Shalak & ShuChien, Handbook of Bioengineering,
- 10. Sean P. Flanagan, Flanagan, Biomechanics: A case based Approach, Jones & Bartlett Publishers, 2013
- 11. Y. C. Fung, Yuan-Cheng Fung, Biomechanics: mechanical Property of living Tissue, Springer, 1996.
- 12. Carol A. Oatis, The Mechanics and Pathomechanics of Human Movement, Lippincott Williams & Wilkins, 2010

Course Code	Course Name	Scheme	Theory	Practical	Tutoria l	Total
IL 363	Biomedical	Contact Hours	3	-	-	3
	Instrumentation	Credits	3	-	-	3

Course Code	Course Name	Examination Scheme							
		Theory Marks				Term			
		Internal Assessment			End	Wor	Practical /	Oral	Tota
		IA 1	IA 2	Average	Sem Exam	k	Tractical	Glai	1
IL 363	Biomedical Instrumentatio n	40	40	40	60	-	-		100

- 1. Develop a fundamental understanding of human physiology and anatomy to comprehend the sources of biomedical signals and their role in medical diagnosis and treatment.
- 2. Understand the origin and characteristics of bioelectric signals and learn about the various types of electrodes, biosensors, smart sensors, and biomedical recorders used in healthcare.
- 3. Gain knowledge of biomaterials, bone structure, composition, and the biomechanics of soft tissues and joints, as well as their applications in implants, prosthetics, and orthotics.
- 4. Learn about the operation and application of diagnostic instruments
- 5. Understand the principles and applications of therapeutic instruments
- 6. Study the integration of AI in healthcare

Course Outcomes: Learner will be able to

- 1. Explain the fundamentals of human physiology and anatomy and identify the sources of biomedical signals critical to medical diagnostics and instrumentation.
- 2. Analyze the structure and properties of biomaterials, bones, soft tissues, and joints, and evaluate their applications in developing implants, prosthetics, and orthotic devices.
- 3. Describe the principles, design, and functionality of basic and intelligent medical instrumentation systems.
- 4. Assess the functionality and clinical applications of diagnostic instruments.
- 5. Explain the working principles and applications of therapeutic instruments.
- 6. Illustrate the role of artificial intelligence in healthcare.

Module	Detail Content			
Ly	Fundamentals of Bioengineering: A brief on human physiology and			
	anatomy, sources of biomedical signals, basic medical instrumentation			
	system, intelligent medical instrumentation systems, regulation of			
	medical devices.			
2	Biomaterials and Biomechanics: Introduction to biomaterials, Bone	6		
	structure & composition, Structure and functions of Soft Tissues, types			
	of joint, Implants, Prosthetics and orthotics.			
3	Bioelectric signals and electrodes: Origin of Bioelectrical signals,	8		

	Recording electrodes, Microelectrodes, Biosensors, Smart Sensors,			
	Biomedical recorders.			
4	Introduction to Diagnostics Instruments: Patient monitoring system,	7		
	Arrythmia and ambulatory monitoring instrumentation, oximeters,			
	Blood flowmeter, Cardiac output measurement, Pulmonary analyzers,			
	Blood gas analyzers, Blood cell counters.			
5	Introduction to Therapeutic Instruments: cardiac pacemakers,	6		
	cardiac defibrillators, instruments for surgery, physiotherapy and			
	electrotherapy equipment, hemodialysis machine, ventilators			
6	AI for Health care: Medical Imaging, Surgical Assistance,	6		
	Personalized medicine, Wearable Devices and monitoring, Healthcare			
	management system			

Assessment:

Internal Assessment: 40 marks

End Semester Examination: 60 Marks

Books/References:

1. "Handbook of Biomedical Instrumentation" by R. S. Khandpur

2. "Biomedical Instrumentation and Measurements" by Leslie Cromwell, Fred J. Weibell, and Erich A. Pfeiffer

3. "Medical Instrumentation: Application and Design" by John G. Webster

4. "Biomechanics: Principles and Applications" by Donald R. Peterson and Joseph D. Bronzino

5. "Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again" by Eric Topol

Course Code	Course Name	Scheme	Theory	Practical	Tutoria l	Total
IL 364	Design of Experiments	Contact Hours	3	-	-	3
		Credits	3	-	-	3

		Examination Scheme						
Course	Course Name	Theory Marks				Term		
Code		Internal Assessment End			End	Wor	Practical Ora	₁ Tota
Coue		IA 1	IA 2	Average	Sem Exam	k	Tractical Gran	1
IL 364	Design of Experiments	40	40	40	60	-		100

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

Course Outcomes: Learner will be able to...

- 1. Fundamentals of experiments and its uses
- 2. Basic statistics including ANOVA and regression
- 3. Experimental designs such as RCBD, BIBD, Latin square, factorial and fractional factorial designs.
- 4. Apply statistical models in analyzing experimental data
- 5. RSM to optimize response of interest from an experiment
- 6. Use software such as Minitab

Module	Detailed Contents	Hrs			
1	1 Introduction 1. Why experiment? 2. Terms and Component of Experiment 3. Experimental Units and Responses 4. Types of Data ,Plots and Charts 5. Importance of Product Reliability 6. Uncertainty of Measurement 7. Classification of DOE 8. Software for DOE 9. Principle of Experimental Design 10. Types of Experimental Design				
2	Basic Statistics and ANOVA 1. Random Variable and Probability Distribution 2. Normal Distribution 3. Sampling Distribution 4. Estimation 5. Hypothesis Testing 6. Determination of Sample size	08			

		1
	 Analysis of Variance(ANOVA) Estimation of model parameters and Adequacy test ANOVA-Pair wise comparison and Tukey's and Fishers LSD test Two way ANOVA Multi way ANOVA Determination of Sample Size for ANOVA 	
3	Regression 1. Introduction to Multiple Linear Regression(MLR) 2. Sampling distribution of Regression coefficients 3. MLR: Hypothesis testing and Model Adequacy Test 4. MLR:Diagnostic and Testing for Lack of Fit 5. Regression approach to ANOVA	
4	Experimental Designs 1. Randomized Complete block design (RCBD) 2. RCBD-Estimation of Parameters 3. RCBD-Balanced Incomplete block design(BIBD) 4. RCBD-Latin square design 5. Introduction to Factorial Design 6. Statistical Analysis of Factorial Design 7. Estimation of parameters and Model Adequacy test 8. Full factorial design 9. Two level factorial design 10. Statistical Analysis of the 2 ^k Design 11. Blocking and Confounding in the 2 ^k Design 12. Fractional Factorial Design	08
5	Response Surface Methods and Designs 1. Introduction to Response Surface Methodology 2. RSM-First order model 3. Experimental design for fitting Response Surfaces 4. RSM-Fitting Second order model 5. Analysis of Second order RSM	06
6	Taguchi Approach 1. Crossed Array Designs and Signal-to-Noise Ratios 2. Analysis Methods 3. Robust design examples	04

Internal Assessment: 40 marks

End Semester Examination: 60 Marks

- 1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001

- 3. George E P Box, J Stuart Hunter, William G Hunter, Statistics for Experimenters: Design, Innovation and Discovery, 2 nd Ed. Wiley
- 4. W J Diamond, Practical Experiment Designs for Engineers and Scientists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
IL 365	Design for Sustainability	Contact Hours	3	-	-	3
		Credits	3	-	-	3

		Examination Scheme								
Course		Theory Marks								
Code	Course Name	Inter	nal Asse	essment	End	Term Practical	Oral Tota			
Code		IA 1	IA 2	Average	Sem Exam	Work	Tractical	Oral		
IL 365	Design for Sustainability	40	40	40	60	-	-	<u> </u>	100	

- 1. Understand the complex environmental, economic, and social issues related to sustainable engineering
- 2. Become aware of concepts, analytical methods/models, and resources for evaluating and comparing sustainability implications of engineering activities
- 3. Critically evaluate existing and new methods
- 4. Develop sustainable engineering solutions by applying methods and tools to research a specific system design
- 5. Clearly communicate results related to their research on sustainable engineering

Course Outcomes: Learner will be able to

- 1. Account for different theoretical and applied design principles and models for sustainable design
- 2. Account for and critically relate to sustainable design from an ethical, cultural and historical perspective
- 3. Critically review different design solutions ecological, social and economical consequences, risks, possible uses and functions in the work for a sustainable development
- 4. Independently apply a specific design theory on a specific challenge within the sustainability field.

Module	Detailed Contents	Hrs								
1	Introduction Need, Evolution of sustainability within Design,	6								
	environmental - economic sustainability concept, Challenges for									
	sustainable development, Environmental agreement & protocols									
2	Product Life Cycle Design - Life Cycle Assessment, Methods &	6								
	Strategies, Software Tools									
3	Sustainable Product - Service System Design, Definition, Types &	8								
	Examples ,Transition Path and Challenges, Methods and Tools, Design									
X	thinking and design process for sustainable development									
4	Design for Sustainability – Engineering Design Criteria and Guidelines	6								
5	Design for Sustainability – Architecture, Agriculture, Cities &	6								
7	Communities, Carbon Footprint									
6	Green Building Technologies - Necessity, Principles, low energy materials,	6								
	effective systems									

Assessment:

Internal Assessment: 40 marks

End Semester Examination: 60 Marks

- 1. C. Vezzoli, System Design for sustainability. Theory, methods and tools for a sustainable / satisfaction system/design, Rimini, Maggioli Edition, 2007.
- 2. C. Vezzoli and E. Manzini, Design for Environmental Sustainability, Springer Verlag, London, 2008.
- 3. L. Nin and C. Vezzoli, Designing Sustainable Product-Service Systems for all. Milan: Libreria, CLUP, 2005
- 4. A. Tukker and U. Tischner (eds.), New Business for Old Europe, Product Services, Sustainability and Competitiveness, Greenleaf Publishing, Shefield, 2008.
- A. Tukker, M. Charter, C. Vezzoli, E. Sto and M.M. Andersen (eds.), System innovation for Sustainability Perspective on Radical Changes to sustainable consumption and production, Greenleaf Publishing, Shefield, 2008
- **6.** UNEP, Product-Service Systems and Sustainability. Opportunities for sustainable solutions, CEDEX, Paris, 2002, at http://www.uneptie.org/pc/sustain/reports/pss/pss-imp-7.pdf

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
IL 366	Political Science	Contact Hours	3	-	-	3
IL 300	Pontical Science	Credits	3	-	-	3

		Examination Scheme							
Course	Course Name	Theory Marks							
Code		Inter	nal Asse	essment	End	Term Practical		Oral Total	
Code		IA 1	IA 2	Average	Sem Exam	Work	Fractical	Oral	Total
IL 366	Political Science	40	40	40	60	-	- (100

- 1. Provide a good grounding in the basic concepts of Political Theory.
- 2. Familiarize learners with fundamental rights and duties.
- 3. Teach students the structure and process of the electoral system, the features and trends of the party system and create an awareness of the social movements in India.
- 4. To inculcate the values of renowned thinkers on law, freedom of thought and social justice.
- 5. To prepare the learners for understanding the importance of Comparative Government and Politics.
- 6. To train learners in understanding International Relations.

Course Outcomes: Learner will be able to

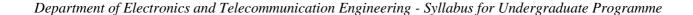
- 1. Acquire conceptual and theoretical knowledge in the basic concepts of political theory.
- 2. Demonstrate understanding of fundamental rights and duties and directive principles.
- 3. Perform successfully in expressing the process of the electoral system, the features and trends of the party system and the importance of the social movements in India.
- 4. Illustrate the contribution of renowned thinkers and relate it to the current scenario.
- 5. Compare and contrast Indian Government and Politics with European countries.
- 6. Develop an understanding of International Relations with respect to Indian foreign policy.

	Module	Detail Content	Hrs.
	1	Understanding Political Theory- Evolution of State, Nation, Sovereignty,	4
		Types and Linkages between Power and Authority; Interrelationships	
	(between Law. Liberty, Equality, Rights; Justice and Freedom, Democracy	
		vs Authoritarianism	
	2	Constitutional Government in India - Evolution of the Indian Constitution,	6
		Fundamental Rights and Duties. Directive Principles. Union-State	
		Relations, Union Legislature: Rajya Sabha, Lok Sabha: Organisation,	
		Functions – Law making procedure, Parliamentary procedure,	
		Government in states: Governor, Chief Minister and Council of Ministers:	
7		position and functions – State Legislature: composition and functions.	
		Judiciary: Supreme Court and the High Courts: composition and functions	
		– Judicial activism. Constitutional amendment. Major recommendations	
		of National Commission to Review the Working of the Constitution.	
	3	Politics in India: Structures and Processes- Party system: features and	6
		trends - major national political parties in India: ideologies and	
		programmes. Coalition politics in India: nature and trends. Electoral	
		process: Election Commission: composition, functions, role. Electoral	
		reforms. Role of business groups, working class, peasants in Indian	

	politics, Role of (a) religion (b) language (c) caste (d) tribe. Regionalism in Indian politics. New Social Movements since the 1970s: (a) environmental movements (b) women's movements (c) human rights movements.	
4	Indian Political Thought- Ancient Indian Political ideas: overview. Kautilya: Saptanga theory, Dandaniti, Diplomacy. Medieval political thought in India: overview (with reference to Barani and Abul Fazal). Legitimacy of kingship. Principle of Syncretism, Modern Indian thought: Rammohun Roy as pioneer of Indian liberalism – his views on rule of law, freedom of thought and social justice. Bankim Chandra Chattopadhyay, Vivekananda and Rabindranath Tagore: views on nationalism. M.K. Gandhi: views on State, Swaraj, Satyagraha.	7
5	Comparative Government and Politics- Evolution of Comparative Politics. Scope, purposes and methods of comparison. Distinction between Comparative Government and Comparative Politics.	6
6	Perspectives on International Relations- Understanding International Relations: outline of its evolution as academic discipline. Major theories: (a) Classical Realism and Neo-Realism (b) Dependency (c) World Systems theory. Emergent issues: (a) Development (b) Environment (c) Terrorism (d) Migration. Making of foreign policy. Indian foreign policy: major phases: 1947-1962; 1962-1991; 1991-till date. Sino-Indian relations; Indo-US relations.	7

Internal Assessment: 40 marks

End Semester Examination: 60 Marks


Books/References:

1. O.P. Gauba. (2021). An Introduction to Political Theory. Mayur books

2. Vibhuti Bhushan Mishra. (1987). <u>Evolution of the Constitutional History of India (1773-1947: With Special Reference to the Role of the Indian National Congress and the Minorities</u>). South Asia Books

3. Chetna Sharma Pushpa Singh. (2019). *Comparative Government and Politics.* SAGE Publications India Pvt Ltd.

4. Henry R. Nau. (1900). <u>Perspectives on International Relations: Power, Institutions and Ideas</u>. CQ Press

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
IL 367	Visual Arts	Contact Hours	3	-	-	3
		Credits	3	-	-	3

		Examination Scheme								
Course		Theory Marks								
Course Code	Course Name	Internal Assessment			End	Term	Practical	Oral	Total	
Code		IA 1	IA 2	Average	Sem Exam	Work	Tractical	Viai	Iotai	
					Exam				/	
IL 367	Visual Arts	40	40	40	60	-	_ (-	100	

- 1. To enable learners to develop aesthetic judgement, visual perception, critical thinking skills in the different forms of art and understand its application.
- 2. To promote the concept of visual design and understand the different meanings assigned to colours, its impact and problems.
- 3. To provide the opportunity and scope to use the image editing software for creating images for Web and Video.
- 4. To inculcate the basic skills required in drawing and painting through exposure in nature and study of still objects.
- 5. To train students to express their feelings and write imaginatively.
- 6. To prepare the learners for the use of clay modelling techniques and its industrial applications.

Course Outcomes: Learner will be able to

- 1. Acquire the skills necessary for aesthetic judgement, visual perception and critical thinking required in different forms of art.
- 2. Demonstrate the understanding of the concept of visual design with respect to the different meanings assigned to colours and the problems associated.
- 3. Illustrate effective use of image editing software for creating images for the Web and Video.
- 4. Determine the importance of drawing and painting with respect to nature and still objects.
- 5. Perform successfully in expressing their feelings creatively.
- 6. Develop the techniques required for clay modelling and sculpture for industrial use.

Module	Detail Content	Hrs.						
1	History of Art and Architecture- Changing needs and forms of art from the	4						
AA	Palaeolithic period to The Renaissance period with special reference to							
	Roman, Indian and Chinese art							
2	Introduction and concepts of visual design with special emphasis on the	5						
	psychological impact of colour							
3	Introduction to image editing software, tools, application and creating	7						
	Images for Web and Video. With special reference to Adobe Photoshop							
4	Fundamentals of Drawing- study of forms in nature, study of objects and	6						
	study from life, creative painting- basic techniques, tools and equipment,							
	medium of painting.							
5	Creative writing- Movie critique, book reviews, Poems, short plays and	7						
	skits, Humorous Essays, Autobiography and short stories.							
6	Creative sculpture- Introduction to clay modelling techniques, study of	7						

natural and man-made objects in clay, Sculpture with various materials -
Relief in Metal Sheets – Relief on Wood – Paper Pulp - Thermocol.
Sculpture with readymade materials.

Internal Assessment: 40 marks

End Semester Examination: 60 marks

Reference Books:

1. Gill Martha. (2000). Color Harmony Pastels: A Guidebook for Creating Great Color Combinations. Rockport Publishers.

- 2. Janson, Anthony F. (1977). History of art, second edition, H.W. Janson. Instructor's manual. Englewood Cliffs, N.J.: Prentice-Hall.
- 3. Brommer, Gerald F. (1988). Exploring Drawing. Worcester, Massachusetts: Davis Publications.
- 4. Wendy Burt Thomas. (2010). The Everything Creative Writing Book: All you need to know to write novels, plays, short stories, screenplays, poems, articles, or blogs: All You Need ... - Stories, Screenplays, Blogs and More. Fw Media; 2nd edition.
- 5. Élisabeth Bonvalot. (2020). Sculpting Book: A Complete Introduction to Modeling the Human Figure.

Course Code	Course Name	Scheme	Theory	Practical	Tutoria l	Total
IL 368	Modern Day Sensor	Contact Hours	3	-	-	3
	Physics	Credits	3	-	-	3

	Course Name	Examination Scheme							
Course		Theory Marks				Term			
Code		Internal Assessment			End	Wor		Oral	Total
Couc		IA 1	IA 2	Average	Sem Exam	k	Tractical Graf	rotar	
IL 368	Modern Day Sensor Physics	40	40	40	60	-	-	<i>></i>	100

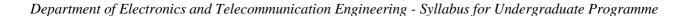
- 1. Acquire knowledge about the principles and analysis of sensors.
- 2. Emphasis on characteristics and response of micro sensors.
- 3. Acquire adequate knowledge of different transducers and Actuators.
- 4. Learn about the Micro sensors and Micro actuators.
- 5. Selection of sensor materials for fabrication for different applications

Course Outcomes: On successful completion of course learner/student will be able to:

- 1. Analyze the basics and design the resistive sensors.
- 2. Identify the materials and designing of inductive and Capacitive Sensors.
- 3. Analyze various types of Actuators.
- 4. Design Micro sensors and Micro Actuators for various applications.
- 5. Implement fabrication process and technologies and compare various Micro machining processes

Mod	dule	Detail Content	Hrs.				
	1	Fundamentals of Sensors : Difference Between Sensor, Transducer And Actuators- Classification Of Sensors: Proprioceptive And Exteroceptive – Active And Passive— Contact And Non-Contact, Selection And Characteristics: Range; Resolution, Sensitivity, Error, Repeatability, Linearity And Accuracy, Primary Sensing Elements.	6				
2	2	Temperature sensors: Principle of operation, construction details, characteristics and applications of Bimetallic thermometer, Resistance thermometer, Thermistor, Thermocouples and Total radiation Pyrometers					
	3	Strain, Force, Torque and Pressure Sensors Strain gauges, strain gauge beam force sensor, piezoelectric force sensor, load cell, torque sensor, Piezo- resistive and capacitive pressure sensor, Manometer, vacuum sensors, Pirani gauge.	6				
4	4	Displacement, Level and Flow Sensors Displacement Sensors: LVDT, RVDT, eddy current, transverse inductive, Hall Effect, magneto resistive, magnetostrictive sensors.	8				

	Liquid level sensor: Fabry Perot sensor, ultrasonic sensor, capacitive liquid level sensor. Flow sensors: pressure gradient technique, ultrasonic, electromagnetic sensors and Hot wire anemometer. Micro flow sensor, Coriolis mass flow and drag flow sensor.	
5	Micro Machining Technologies Overview of silicon processes techniques, Photolithography, Ion Implantation, and Diffusion, Chemical Vapor Deposition, Physical vapor Deposition, Epitaxy, Etching, Bulk micromachining, Surface Micromachining, LIGA and other techniques.	6
6	Actuators Definition, types and selection of Actuators; linear; rotary; Logical and Continuous Actuators, Pneumatic actuator, Hydraulic actuator - Control valves and cylinders Electrical actuating systems: Solenoids, Electric Motors - D.C motors - AC motors - Three Phase Induction Motor, Stepper motors - Piezoelectric Actuator.) ₅


Internal Assessment: 40 marks

End Semester Examination: 60 Marks

Books/Reference:

1. Robert H Bishop, "The Mechatronics Hand Book", CRC Press, 2002.

- 2. Thomas. G. Bekwith and Lewis Buck, N, "Mechanical Measurements", Oxford and IBH publishing Co. Pvt. Ltd.,
- 3. Massood Tabib and Azar, "Microactuators Electrical, Magnetic, thermal, optical, mechanical, chemical and smart structures", First edition, Kluwer academic publishers, Springer, 1999.
- 4. Manfred Kohl, Shape Memory Actuators, first edition, Springer.
- 5. Patranabis.D, Sensors and Transducers, Wheeler publisher, 1994.

Course Code	Course Name	Scheme	Theory	Practical	Tutoria l	Total
IL 369	Energy Audit and	Contact Hours	3	-	-	3
	Management	Credits	3	-	-	3

		Examination Scheme							X
Course	Course Name	Theory Marks				Term			
Code		Internal Assessment			End	Wor	Practical (Oral	Tota
Couc		IA 1	IA 2	Average	Sem	k	Tractical Ofai	Orai	1
		171	1/1 2	nverage	Exam	12			
	Energy Audit						(\	
IL 369	and	40	40	40	60	-	-,		100
	Management								

- 1. To impart basic knowledge to the students about current energy scenario, energy conservation, audit and management.
- 2. To inculcate among the students systematic knowledge and skill about assessing the energy efficiency, energy auditing and energy management.
- 3. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 4. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

Course Outcomes: Upon successful completion of this course, the learner will be able to

- 1. To identify and describe the present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities.
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detail Content	Hrs.			
	Energy Scenario: Energy needs of growing economy, Long term energy scenario, Energy pricing, Energy sector reforms, Energy and environment: Air pollution, Climate change, Energy security, Energy conservation and its importance, Energy strategy for the future, Energy conservation Act2001 and its features.				
2	Energy Management and Audit: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments.	10			

	Material and Energy balance: Facility as an energy system, Methods for preparing process flow, Material and energy balance diagrams. Financial Management: Investment-need, Appraisal and criteria, Financial analysis techniques-Simple payback period, Return on investment, Net present value, Internal rate of return, Cash flows, Risk and sensitivity analysis, Financing options, Energy performance contracts and role of ESCOs	
3	Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	10
4	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	10
5	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	3
6	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Build Building, LEED rating, Application of NonConventional and Renewable Energy Sources	3
S 33		

Internal Assessment: 40 marks

End Semester Examination: 60 Marks

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
H 270	Maintenance of	Contact Hours	3	-	-	3
IL 370	Electronic Equipment	Credits	3	-	-	3

		Examination Scheme								
Course	Course Name	Theory Marks								
Code		Internal Assessment			End	Term	Practical	Oral	Total	
Couc		IA 1	IA 2	Average	Sem Exam	Work	Tractical	Clai	Total	
IL 370	Maintenance of Electronic Equipment	40	40	40	60	-	_	Ţ (100	

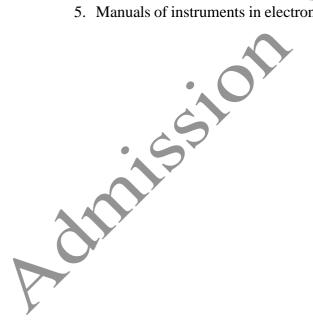
- 1. To demonstrate use of different instruments used in electronics lab.
- 2. To understand testing of different active and passive components.
- 3. To understand functionality of digital ICs.
- 4. To understand software required for simulation of electronic circuit.
- 5. To understand fault finding.
- 6. To understand concept of designing, manufacturing electronic circuit.

Course Outcomes:

- 1. Able to use different types of instruments used in electronics lab.
- 2. Able to test different active and passive components manually.
- 3. Able to understand functionality of digital logics.
- 4. Able to simulate and test electronic circuits.
- 5. Able to identify faults in circuits.
- 6. Able to design, manufacture and troubleshoot electronic circuit.

Detailed Lab/Tutorial Description: Students will have to perform five to six experiments / tutorials based on the syllabus and design, assemble electronic circuit in lab and write journal and project report as a term work.

SN	Detailed Lab/Tutorial Description	Hrs.
	Demonstrate working and use of two instruments in electronics laboratory.	6
2	Fundamental troubleshooting procedures inside an electronic equipment.	7


3	Parametric testing of Active and Passive Components.	6
4	Testing of Integrated Circuits (ICs) and design of electronic circuit using ICs and various active and passive components.	6
5	Repairing and fault finding in circuits and surface mounted assemblies.	6
6	Fabrication of designed circuit and troubleshooting, checking output on CRO and report submission.	8

The students will have to submit project report in prescribed format and give presentation at the end of semester.

Assessments:

Internal Assessment: 40 marks (IA-I, IA-II Based on practical and project work) End Semester Examination: 60 marks (Based on practical, project work, report and presentation, question- answer session)

- 1. Troubleshooting and Maintenance of Electronics Equipment, Singh K. Sudeep, Katson Book, New Delhi, II edition, Reprint 2014
- 2. Troubleshooting Electronic Equipment: Includes Repair and Maintenance, Second Edition, Khandpur R. S., Tata McGraw-Hill Education, New Delhi, India, latest edition.
- 3. Data Books, National semiconductor.
- 4. Modern Digital Electronics, Fourth edition, R. P. Jain, Tata McGraw-Hill Education, New Delhi, India.
- 5. Manuals of instruments in electronics laboratories.

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
IL 371	371 Cooking and Nutrition	Contact Hours	3	-	-	3
	G	Credits	3	-	-	3

				Exa	aminatio	n Schem	ne		
Сописо	Course Name	Theory Marks							JV
Course Code		Internal Assessment			End	Term	Practical	Oral	Tota
Couc		IA 1	IA 2	Average	Sem Exam	Work	Tractical	Orai	I
IL 371	Cooking and Nutrition	40	40	40	60	-	-	<i>)</i> -	100

Course Objectives: The course is aimed to

- 1. To understand nutrition and of health problems related to diet and various factors affect diet
- 2. To various statistical tools required to analyze the experimental data in nutrition and community research
- 3. Gain information about various food constituents, and changes that occur in them during food processing.
- 4. To gain food-related knowledge and skills so that they can organise and manage family resources effectively according to the needs and lifestyles of family members
- 5. To be able to make informed judgements and choices about the use of food available.
- 6. To create interest in the creative side and enjoyment of food and the skills necessary for food preparation and food preservation. And to be aware of relevant mandatory and other necessary safety and hygiene requirements

Course Outcomes: On successful completion of course learner/student will be able to

- 1. To understand the importance and mechanisms of the food components taking place during food processing,
- 2. To understand nutrition and of health problems related to diet and various factors affect diet
- 3. To aware how eating patterns and dietary needs depend on age and social group
- 4. Ability to assess the effectiveness and validity of claims made by advertisers
- 5. To enhance aesthetic and social sensitivity to dietary patterns and to develop an interest in the creative aspect and enjoyment of food
- 6. To develop skills necessary for food preparation and food preservation and knowledge of safety and hygiene requirements

Modul	Detail Content	Hrs
1	Nutritional terms: proteins (high biological and low biological value), carbohydrates (monosaccharide, disaccharide and polysaccharide), fats, vitamins (A, C, D, E, K, B group – thiamin, riboflavin, nicotinic acid and cobalamin), mineral elements (calcium, iron, phosphorous, potassium, sodium, iodide) water Sources and uses of food energy. Sources and functions of dietary fibre.	3
2	Kitchen equipment & Kitchen planning: Selection, Use and care of:	4

	modern cookers, thermostatic control and automatic time-controlled ovens, microwave ovens, slow electric cook pots, refrigerators and freezers, small kitchen equipment, e.g. knives, pans, small electrical kitchen equipment, e.g. food processors, electric kettles, Advantages and disadvantages of microwave ovens, Organisation of cooking area and equipment for efficient work., Selection, Use and care of: work surfaces, flooring, walls and wall coverings, lighting, ventilation	
3	Meal planning and guidelines: Factors affecting food requirements, Planning and serving of family meals, Meals for different ages, occupations, cultures and religions, Special needs of: people with food allergies and intolerances, people with medical conditions linked to diet, such as diabetes, convalescents, vegetarians, including vegans and lacto-vegetarians, Meals for special occasions, festivals, packed meals, snacks, beverages, Use of herbs, spices and garnishes, Attractive presentation of food, Terminology describing recommended dietary intakes, e.g. Dietary Reference Value (DRV) and Reference Daily Intake (RDI).	6
4	Strategic cooking: Transfer of heat by conduction, convection and radiation. Principles involved in the different methods of cooking, baking, boiling, braising, cooking in a microwave oven, frying, grilling, poaching, pressure cooking, roasting, simmering, steaming, stewing, use of a slow cooker.Reasons for cooking food, Sensory properties of food (flavour, taste, texture), Effect of dry and moist heat on proteins, fats and oils, sugars and starches, and vitamins to include: caramelisation, coagulation dextrinization, enzymic and non-enzymic browning, gelatinisation, rancidity, smoking point, Preparation and cooking of food to preserve nutritive value, Economical use of food, equipment, fuel and labour.	6
5	Convenience foods and Basic proportions: Foods partly or totally prepared by a food manufacturer – dehydrated, tinned, frozen, ready-to-eat, Intelligent use of these foods, Advantages and disadvantages, Food additives – types and function, Packaging – types, materials used, Labelling – information found on labels, Importance of maintaining proportions, maintaining proportions for: Bakery products, melting, rubbing-in and whisking methods, Pastries – shortcrust, flaky and rough puff, Sauces – pouring and coating, roux and blended methods, Batters – thin (pouring) and coating, Sweet and savoury yeast products	5
6	Food preservation & Kitchen safety and first aid: Food preservation & Kitchen safety and first aid: Reasons for preserving food, Methods of preservation and an understanding of the principles involved: heating – canning, bottling; removal of moisture – dehydrating; reduction in temperature – freezing; chemical preservation – sugar, salt, vinegar; modified atmosphere packaging; irradiation; Awareness of potential danger areas in the kitchen. Safety precautions. First aid for burns and scalds, cuts, electric shock, fainting, shock.	5

Internal Assessment: 40 marks

End Semester Examination: 60 Marks

- 1. Fundamentals of Food and Nutrition by Tejmeet Rekhi, Heena Yadav
- 2. Food Process Engineering And Technology by Akash Pare, B L Mandhyan

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
IL 372	Environmental	Contact Hours	3	-	-	3
	Management	Credits	3	-	-	3

		Examination Scheme								
Course	Course Name	Theory Marks								
Code		Internal Assessment			End	Term	Practical	Oral	Tota	
Code		IA 1	IA 2	Average	Sem Exam	Work	Tractical	Ulai	1	
IL 372	Environmenta l Management	40	40	40	60	-	0-1		100	

- 1. To promote the safety, health, and welfare of people and the environment through engineering professionals.
- 2. To encourage students to be productive and contributing members of the environmental profession as practitioners, entrepreneurs, researchers, or teachers.
- 3. To develop environmental awareness among students that meet specified engineering needs with consideration of public health, safety, and welfare, as well as global, environmental, and legal factors.

Course Outcomes: On successful completion of the course learner/student will be able to:

- 1. Understand core concepts and methods from ecological sciences and their application in environmental problem-solving.
- 2. Recognize different types of toxic substances and analyze toxicological information
- 3. Acquire and apply environmental knowledge to the engineering field as needed.
- 4. 4. Assist industries and projects in obtaining environmental clearance and compliance with other environmental laws.
- 5. Interpret appropriate environment-related legislation.
- 6. Develop a thorough understanding of practice and procedure followed by various enforcing agencies/bodies/countries.

Module	Detail Contents	Hrs.
	Fundamentals of Environmental Sciences Definition, Principles, and Scope of Environmental Science. Structure and composition of the atmosphere, hydrosphere, lithosphere, and biosphere. Concept of Ecology- Ecosystem, Food chain, Food web, Ecological pyramid, Ecological succession, limiting factor, and carrying capacity. Global Environmental Concerns (Global warming, Loss in Biodiversity, Ozone depletion, E-waste management) and Renewable Energy Resources (Solar Energy, Wind Energy, Hydrothermal Energy, etc.)	8
2	Environmental Chemistry Toxic chemicals: Pesticides and their classification and effects. Biochemical aspects of heavy metals (Hg, Cd, Pb, Cr) and metalloids (As, Se), Sewage	8

	treatment, Concept of DO, BOD, and COD. Composition of air-chemical processes in the formation of inorganic and organic particulate matter, Thermochemical and photochemical reactions in the atmosphere, Oxygen and Ozone chemistry. Photochemical smog, Air Quality Index	
3	Fundamentals of Environmental Management Concept of Environmental Management, Need & Objective of Environmental Management, Role of Engineers in Environmental Management, Career Opportunities. The need for sustainable development, Sustainable Development Goals	5
4	Scope of Environmental Management Role and functions of Government as a planning and regulatory agency. Environment Quality Management and Corporate Environmental Responsibility. Total quality Environmental management: ISO 14000, EMS Certification. Environmental Management System Standards (ISO- 14000 series). Environment and Social Management Plan	7
5	Overview of Environmental Laws in India Constitutional provisions in India (Articles 48A and 51A). Wildlife Protection Act, 1972 Indian Forest Act, Water (Prevention and Control of Pollution) Act, Air (Prevention and Control of Pollution) Act, Environmental (Protection) Act, 1986, The e-waste (Management) Rules 2016	5
6	Environmental Conventions and Agreements Stockholm Conference on Human Environment 1972, Montreal Protocol, 1987, Earth Summit at Rio de Janeiro, 1992, Agenda-21, Convention on Biodiversity (1992), UNFCCC, Kyoto Protocol, 1997, Copenhagen Summit, Paris Agreement, CITES.	6

Internal Assessment: 40 marks
End Semester Examination: 60 Marks

Books/References:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G.Oakwell, Edward Elgar Publishing
- 3. Environmental Management, V Ramachandra and Vijay Kulkarni, TERI Press

Amirasion.

- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Macmillan India, 2000

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
IL 373	Vehicle Safety	Contact Hours	3	-	-	3
		Credits	3	-	-	3

		Examination Scheme								
Cours		Theory Marks							7	
Cours e Code	Course Name	Internal Assessment			End	Term	Practical	Oral	Tota	
		IA 1	IA 2	Average	Sem Exam	Work	Tractical	Orai	M	
					Lam					
IL 373	Vehicle Safety	40	40	40	60	-	- \		100	

- 1. To familiarize basic concepts of vehicle safety.
- 2. To familiarize accident reconstruction analysis methods
- 3. To acquaint with different issues related to vehicle safety in India

Course Outcomes: Learner will be able to

- 1. Comprehend Vehicle design from safety point of view.
- 2. Apply concepts of accident reconstruction analysis in real world.
- 3. Enumerate interrelationship among occupant, restraint systems and vehicles in accidents.
- 4. Illustrate role and significance of seat in Rear crash safety
- 5. Demonstrate different active and passive safety systems available in vehicles
- 6. Contribute to the society by being proactive to the cause of safety on roads and in vehicles

Module	Detailed Contents	Hrs.								
1	Introduction to vehicle safety-the integrated approach and its	6								
	classification									
	SAVE LIVES- by WHO									
	Importance of Risk evaluation and communication, Concepts of									
	Universal design, India's BNVSAP and its outcomes									
2	Crash and distracted driver, Human error control	8								
	Crash Testing, Use of Dummies, evolution and built of dummies.									
	Relevance of Star ratings, NCAPs around the world-									
	Accident Data, Biomechanics and Occupant Simulation									
	Vehicle Body Testing, Dynamic Vehicle Simulation Tests									
1	Occupant Protection, Compatibility, Interrelationship Among Occupants,									
	Restraint Systems and Vehicle in Accidents									
3	Significance of Rear Crash Safety	6								
	Role of seat in Rear crash safety									
	Self aligning head restraints									
	Pedestrian Protection testing and systems									
	Under run Protection Devices									

4	Introduction to A	•	Reconstructi		8			
	Skid distances and	l Critical speed	from Tire	Yaw marks				
	Reconstruction	of Vehicular	Rollover	Rollover Accidents				
	Analysis	of		Collisions				
	Reconstruction			Applications				
	Impulse	Momentum		Theory				
	Crush Energy	·						
	Photogrammetry for ac	metry for accident constructions						
5	Antilock	braking system						
	Electronic	Stability		Program				
	Low tire	pressure	system					
	Collision avoidance sy	lance systems						
6	Basic Vehicle Operations and Road/Helmet Safety Activity							

Internal Assessment: 40 marks

End Semester Examination: 60 Marks

Books/References:

1. Automotive vehicle safety by George Peters and Barbara Peters, CRC Press, 2002.

2. Vehicle Accident Analysis and Reconstruction Methods by Raymond M. Brach and R. Matthew Brach, SAE International, Second Edition, 2011.

3. Role of the seat in rear crash safety by David C. Viano, SAE International, 2002.

4. Automotive Safety Handbook by Ulrich W. Seiffert and LotharWech, SAE International, 2007.

5. Public Safety Standards of the Republic of India

Course Code	Course Name	Scheme	Theory	Practical	Tutorial	Total
IL388	Quantum Computing and Quantum Technologies –	Contact Hours	3	-	-	3
	Part 1	Credits	3	-	-	3

	Course Name	Examination Scheme									
Course Code		Theory Marks									
		Internal Assessment			End Sem		Practical	Oral	Total		
		IA 1	IA 2	Average	Exam	VVOIK	0-1				
IL388	Quantum Computing and Quantum Technologies – Part 1	40	40	40	60		77		100		

- 1. To provide an overview of the emerging field of Quantum Computing and Technology and make the students familiar with the four verticals of Quantum Technology.
- 2. To review theoretical core principles of linear algebra and other tools required to understand quantum states, probability and statistics.
- 3. To understand the basics of computer architecture and digital circuits required for quantum systems.
- 4. To familiarize students with the concept of qubits and their physical realization.
- 5. To review basic concepts of quantum mechanics with specific reference to quantum entanglement, superposition and evolution of quantum states with time.
- 6. To introduce the concept of error correction with reference to quantum systems.

Course Outcomes: Students will be able to learn:

- 1. The basic concept of Quantum Technology and its four verticals.
- 2. Necessary mathematical tools of linear algebra.
- 3. Basics of computer architecture and von Neumann architecture, digital circuits.
- 4. About physical principles of qubits and how they are important for quantum computation.
- 5. Basic postulates of quantum mechanics, quantum entanglement, time evolution of quantum states.

Module	Detail Content	Hrs.					
1	Introduction: National Quantum Mission; Four verticals of Quantum	1					
	Technologies: Quantum Computing, Quantum Communication, Quantum						
	Sensing and Quantum Materials						
2	Review of mathematical tools: Linear algebra, Probability and Statistics	5					
3	Review of Computer Architecture Basics: Principles of Computer Design,	5					
	Basic computer organization and microprocessor, memory management,						
	Relevance to quantum computer architecture						
4	Digital Logic and Circuits: Introduction to digital logic gates, Boolean	5					
	algebra, Combinational circuits						
5	Introduction to Quantum Computing: Quantum bits vs classical bits,	7					
	different types of qubits, Basics of Quantum Algorithms						
6	Basics of Quantum Mechanics: General concepts of superposition,	13					
	entanglement, and tunneling, Schrödinger equation and Uncertainty						
	Principle, quantum states and time evolution						

Internal Assessment: 40 marks

End Semester Examination: 60 Marks

- 1. Quantum Information Science Manenti R., Motta M., 1st Edition, Oxford University Press (2023).
- 2. Elementary Linear Algebra with Applications, Bernard Kolman, David A Hill, Pearson New International Edition, (2013).
- 3. Elementary Statistics: Picturing the World, Ron Larson, 8th edition, Pearson (2023).
- 4. Computer system architecture, M. Morris Mano, (3rd ed.). Prentice Hall, Inc. USA.
- 5. Digital Fundamentals, 11th Edition, Thomas L. Floyd, Pearson Publication.
- 6. Digital Logic and Computer Design, M. Morris Mano, by Pearson Publication.
- 7. Quantum computation and quantum information Nielsen M. A., and Chuang I. L., 10th Anniversary edition, Cambridge University Press (2010).
- 8. Quantum computing explained, David McMahon, Wiley (2008).
- 9. Introduction to Quantum Mechanics, Griffiths D. J., 3rd Edition, Cambridge University Press (2024).
- 10. Principles of Quantum Mechanics, Shankar, R., 2nd edition, Springer (2014)